07 Infinite Series
Infinite Series¶
Let \(\set{a_n}_{n \in \mathbb{Z^+}}\) be a sequence. Then \(\sum\limits_{n = 1}^\infty a_n = a_1 + a_2 + \dots\) is called a series.
If the series has a finite number of terms, it is called a finite series; otherwise it is called an infinite series.
A finite series is always convergent.
A infinite series may/ may not be convergent
Series | Type |
---|---|
\(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} = e^x\) | Converges to \(e^x\) |
\(1 + 1 + \dots\) | Divergent |
\(1 + \frac12 + \dots + \frac1n\) | Divergent |
\(1 - 1 + 1 - 1 + \dots\) | Neither convergent/divergent it is an alternating series which oscilates |
If we are able to find the sum of a series, then the series converges to the sum \(S_n = \dfrac{a}{1 - r}\)
- if sum is finite, then convergent series
- else, divergent series
Series of +ve Terms¶
Consider series \(\sum\limits_{n = 1}^\infty a_n = a_1 + a_2 + \dots + a_n\). This series is a series of +ve terms as \(a_n \ge 0, \forall n\).
We use the following tests.
\(n^\text{th}\) Term Test¶
Important Results¶
- Geometric sum \(a + ar + ar^2 + \dots\)
- converges to \(\dfrac{a}{1 - r}, |r| < 1\)
- diverges
Converges | Diverges | ||
---|---|---|---|
Geometric Series | \(a + ar + ar^2 + \dots\) | \(\vert r \vert < 1\) converges to \(\dfrac{a}{1-r}\) | \(\vert r \vert \ge 1\) |
p-series | \(\sum\limits_{n = 1}^\infty \dfrac{1}{n^p}\) | \(p > 1\) | \(p \le 1\) |
Integral Test¶
This test can be applied when \(a_n = f(n)\) is integrable
Let
- \(\sum a_n\) be a series of +ve terms
- \(a_n = f(n)\) where \(f\) is
- continuous
- +ve
- decreasing function of \(n\), for some \(n \ge N\)
Then by integral test, \(\int\limits_N^\infty f(x) \ dx\) and \(\sum\limits_N^\infty a_n\) converge/diverge together
\(I\) | |
---|---|
Finite | Converges (basically \(S_n\) is finite number) |
Infinite | Diverges |
Ratio Test¶
Used when series contains factorials like \(n!, (2n)!\)
Let \(\sum a_n\) be a series of +ve terms.
Let \(\lim\limits_{n \to \infty} \dfrac{a_{n+1}}{a_n} = k\)
\(k\) | |
---|---|
\(< 1\) | Converges |
\(> 1\) | Diverges |
\(0, 1\) | Test Fails |
Root Test¶
Used when series contains terms with exponents, such as \(n^n, n^{n+1}, n^\frac1n\)
Let \(\lim\limits_{n \to \infty} (a_n)^\frac1n = k\)
\(k\) | |
---|---|
\(< 1\) | Converges |
\(> 1\) | Diverges |
\(1\) | Test Fails |
Limit Comparison Test¶
Best used when \(a_n\) is a fraction of polynomial, ie \(a_n = \frac{P(n)}{Q(n)}\), where \(P, Q\) are polynomials in terms of \(n\)
Let
-
\(\sum a_n\) be a series of +ve terms
-
\(\sum b_n\) be a known series (we know if it converges/diverges)
-
We choose \(b_n = \dfrac{1}{n^{q-p}}\), where
-
P = degree of numerator
-
Q = degree of denominator
-
If \(b_n\) is a p-series of the form \(\sum \dfrac{1}{n^p}\) | \(p\) | | | :-----: | :-------: | | \(> 1\) | converges | | \(\le 1\) | diverges |
- \(\lim\limits_{n \to \infty} \frac{a_n}{b_n} = k\)
-
Then
Given | |
---|---|
\(k = c (\ne 0)\) | both \(\sum a_n\) and \(\sum b_n\) converge |
\(k = 0, \sum b_n\) converges | \(\sum a_n\) converges |
\(k \to \infty, \sum b_n\) diverges | \(\sum a_n\) diverges |