Skip to content

02 Vector Spaces

Set

collection of well-defined elements

Vector Space

A non-empty set \(V\) with binary operations \(\oplus\) and \(\odot\), which satisfies the following rules

Law
Closure Law wrt Addition \(\forall u,v \in V, \quad \vec u \oplus \vec v \in V\)
Commutative Law wrt Addition \(\vec u \oplus v = \vec v \oplus u\)
Associative Law wrt Addition \((\vec u \oplus \vec v) \oplus \vec w = \vec u \oplus (\vec v \oplus \vec w)\)
Existence of additive identity For \(\vec u \in V\), there exists \(\vec 0 \in V\) such that
\(\vec 0 \oplus \vec u = \vec u \oplus \vec 0 = \vec u\)
\(\vec 0\) is not necessarily \((0, 0)\)
Existence of additive inverse For \(\vec u \in V\), there exists \(-u \in V\) such that
\(\vec u \oplus (- \vec u) = (-\vec u) \oplus \vec u = \vec 0\)
Closure Law wrt multiplication For any scalar \(\alpha\) (any real no) and \(\vec u \in V\)
\(\alpha \odot \vec u \in V\)
Distributive Law (Right-Side) For \(u, v \in V\) and scalar \(\alpha\)
\(\alpha \odot (\vec u \oplus \vec v) = (\alpha \odot \vec u) \oplus (\alpha \odot \vec v)\)
Distributive Law (Left-Side) For \(u \in V\) and scalars \(\alpha, \beta\)
\((\alpha + \beta) \odot \vec u = (\alpha \odot \vec u ) \oplus (\beta \odot \vec u)\)
Distributive Law (Variation) For \(u \in V\) and scalars \(\alpha, \beta\)
\((\alpha \beta) \odot \vec u = \alpha \odot (\beta \odot \vec u)\)
Existence of unity For \(u \in V\)
\(1 \odot \vec u = \vec u\)

Known Vector Spaces

  • Real numbers
  • \(R_2, R_3, R_n\)
  • matrices
  • polynomials
    • form \(ax^n + bx^{n-1} + \dots + \alpha, \quad a, b \in R, \quad n \in Z\)
    • \(P_n\) means degree of the polynomial \(\le n\)
  • continuous functions

Subspace

Let \(S \subset V\) vector space. Then, \(S\) is a subspace if

  1. \(\vec 0 \in S\)
  2. \(\forall u, v \in S, \quad u \oplus v \in S\)
  3. \(\forall u \in S, \quad \alpha \odot u \in S\)

Trick to identify is if sum of powers of multiplicative terms is 1 For eg, \(x^a y^b + w^c z^d\) is subspace if \(a + b= 1, c + d = 1\)

Polynomial

\(P_n\) is a polynomial where degree \(\le n\)

For eg, even \((1 + x)\) is \(P_3\), as degree \(= 1 \le 3\)

Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments