Skip to content

04 Linear Transformations

Linear Transformations

Consider a linear transformation

\[ L: \underbrace{U}_{\text{Domain}} \to \underbrace{W}_{\text{Codomain}} \]

Properies

  1. \(L(O_u) = O_w\)
  2. \(L(\vec u \oplus \vec v) = L(\vec u) + L(\vec v)\)
  3. \(L(\alpha \odot u) = \alpha \cdot L(\vec u)\)

Tricks

A transformation is not Linear Transformation if

  • Power \(\ne\) 1 or 0
  • there is modulus(absolute value)
  • determinant

Kernel

\[ S = \set{ \vec u: L(\vec u) = O_w } \]

Set of all input values

Range

\[ S = \set{ L(\vec u) } \]

Set of all output values

Properties

Property Condition
One-one Kernel = \(\set{O_u}\)
Onto dim(range) = dim(codomain)

Dimension Theorem

\[ \text{ dim(range) + dim(kernel) = dim(U) } \]
Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments