Skip to content

05 Eigen Values, Vectors

Eigen Values

are the values of \(\lambda\) that satisfy equation

\[ | A - \lambda I | = 0 \]

Properties

  1. Eigen values of upper/lower \(\triangle\)r matrix = diagonal elements
  2. No of eigen values = order of A
  3. Sum of eigen values = Sum of diagonal elements
  4. Product of eigen values = \(|A|\)
  5. If eigen values of \(A = \lambda\), then
Matrix Eigen Value
\(A^{-1}\) \(\frac{1}{\lambda}\)
\(A^n\) \(\lambda^n\)
\(A^T\) \(\lambda\)

Eigen Vectors

are the values of \(X\) that satisfies equation

\[ (A - \lambda I) X = 0 \]

Eigen vector(s) of \(A\) = eigen vector(s) of \(A^{-1}, A^n, A^T\)

Working

Scenario Method
Repeating eigen values back substitution
else Cramer’s rule for 2 independent rows
Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments