Skip to content

09 Complex Integrals

Line Integral

For \(\int f(z) \ dz\), put \(z = r \cdot e^{i \theta}\)

ML Inequality

maximum value / upper bound of integral

\[ \left| \int_C f(z) \ dz \right| \le M \times L \]

where

  • \(M =\) max value of \(f(z)\)
  • \(L =\) length of contour \(C\)

Theorems

Theorem Cauchy-Goursat Cauchy-Integral Cauchy-Integral for derivatives Cauchy Residue
Condition \(f(z)\) is analytic inside/on \(C\) - \(f(z)\) is analytic inside/on \(C\)
- \(z_0\) is a point inside \(C\)
- \(f(z)\) is analytic inside/on \(C\)
- \(z_0\) is a point inside \(C\)
Identity \(\int_C f(z) \ dz = 0\) \(\int_C \frac{f(z)}{z-z_0} dz = 2 \pi i \cdot f(z_0)\) \(\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2 \pi i}{n!} \times f^{(n)}(z_0)\) $\int_C f(z) dz = 2 \pi i \times \
[\text{Sum of residues at poles lying inside/on } C]$
add for multiple points ❌ ✅ ✅
Theorem Condition Identity add for multiple points
Cauchy-Goursat \(f(z)\) is analytic inside/on \(C\) \(\int_C f(z) \ dz = 0\) ❌
Cauchy-Integral - \(f(z)\) is analytic inside/on \(C\)
- \(z_0\) is a point inside \(C\)
\(\int_C \frac{f(z)}{z-z_0} dz = 2 \pi i \cdot f(z_0)\) âś…
Cauchy-Integral for derivatives - \(f(z)\) is analytic inside/on \(C\)
- \(z_0\) is a point inside \(C\)
\(\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2 \pi i}{n!} \times f^{(n)}(z_0)\) âś…
Cauchy Residue \(\int_C f(z) \ dz = 2 \pi i \times (\sum R)\) ❌

\(\sum R =\) Sum of residues at poles lying inside/on \(C\)

Residue

Type \(R\)
Simple Pole \(\lim_{z \to z_0} (z-z_0) f(z)\)
Pole of order \(m\) \(\dfrac{1}{m-1} \times \dfrac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)]_{z = z_0}\)
\(\dfrac{P(z_0)}{\textcolor{orange}{Q}(z_0)}, P(z_0) \ne 0, Q(z_0) = 0\) \(\dfrac{P(z_0)}{\textcolor{orange}{Q'}(z_0)}\)

Laurent’s Series

\[ \begin{aligned} f(z) &= \sum_0^\infty a_n (z-z_0)^n + \underbrace{ \sum_1^\infty \frac{b_n}{(z - z_0)^n} }_\text{Principal Part} \\ a_n &= \frac{1}{2 \pi i} \times \int \frac{f(z)}{(z-z_0)^{ \textcolor{orange}{n}+1 }} \\ b_n &= \frac{1}{2 \pi i} \times \int \frac{f(z)}{(z-z_0)^{ \textcolor{orange}{-n}+1 }} \end{aligned} \]

The following equation is only valid if \(0 < |z| < 1\)

\[ \begin{aligned} (1+z)^{-1} &= 1 - z + z^2 - z^3 + \dots \\ (1-z)^{-1} &= 1 + z + z^2 + z^3 + \dots \\(1+z)^{-2} &= 1 - 2z + 3z^2 - 4z^3 + \dots \\(1-z)^{-2} &= 1 + 2z + 3z^2 + 4z^3 + \dots \end{aligned} \]

Singular Points

Take all \(n\) points \((\pm n\pi, \pm 2n\pi, \dots)\)

Isolated Point

No other singular point in close neighborhood

Poles

isolated points are poles too

poles of order \(m=1\) are simple poles

Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments