Skip to content

03 Discrete Random Variables

Discrete Random Variables

takes finite/countably-infinite no of values

PDF

\[ \begin{aligned} f(x) &= P(X = x) \\ f(x) &\ge 0 \\ \sum f(x) &= 1 \end{aligned} \]

CDF

\[ \begin{aligned} F(x) &= P(X \le x) \\ &= \sum\limits_0^x f(x) \\ P(a \le X \le b) &= \sum\limits_a^b f(x) \end{aligned} \]

Terms

Notation Formula
\(E(x)\) \(\mu\) \(\sum x \cdot f(x)\)
\(E(x^2)\) \(\sum x^2 \cdot f(x)\)
\(V(x)\) \(\sigma^2\) \(E(x^2) - [E(x)]^2\)
\(\text{SD}(x)\) \(\sigma\) \(\sqrt {V(x)}\)
Normalised Variable \(z\) \(\dfrac{x - E(x)}{\text{SD}}\)
\[ \begin{aligned} E(k) &= k & E(kx) &= k \cdot E(x) & E(z) &= 0\\ V(k) &= 0 & V(kx) &= k^2 \cdot V(x) & V(z) &= 1 \end{aligned} \]

Distributions

Distribution Comment Application Assumptions \(f(x)\) \(\mu\) \(\sigma^2\)
Bernoulli - 2 outcomes Independent & identical trial \(p\) \(p(1-p)\)
Binomial \(n\) indepedent Bernoulli events w/ replacement Coin flips Independent & identical trials \(nC_x \cdot p^x \cdot (1-p)^{n-x}\) \(np\) \(np(1-p)\)
Hypergeometric \(n\) dependent Bernoulli trials without replacement \(f(x) = \frac{MC_x \times (N-M) C_{(n-x)} }{NC_n}\)
\(\text{max}\Big(0, n- (N-m) \Big) \le x \le \text{min}(n, M)\)
\(n \left(\dfrac M N \right)\) \(\left( \dfrac{N-n}{N-1} \right) \cdot n \cdot \dfrac M N \left( 1 - \dfrac M N \right)\)
Geometric Negative binomial dist with \(r=1\)
No of failures before first success
Negative Binomial 'Rare' discrete phenomenon in continuous interval Counts, Rates
Risk
Follows Poisson Process \(f_x(x) = \begin{cases} \begin{pmatrix} x-1\\ r-1 \end{pmatrix} p^r q^{x-r}, & x= r, r+1, \dots \\ 0, & \text{o.w.} \end{cases}\) \(\dfrac{rq}{p}\) \(\dfrac{rq}{p^2}\)

\(\mu + \dfrac{\mu^2}{k}\)
Poisson Negative Binomial with:
variance = mean = constant

Poisson approximates Binomial when
- \(p \to 0\)
- \(n \to \infty\)
Counts, Rates
Risk
Follows Poisson Process \(\dfrac {e^{-\mu} \times \mu^x}{x!}\) \(\lambda = \alpha t\) \(\mu\)

Rate Parameter \((\alpha)\)

Occurences per unit interval

\(\alpha = \dfrac 1 \beta\)

(\(\beta\) will be discussed in next topic)

Poisson Process

  • Average time between events \(\lambda\) is constant
  • Average time between events \(\lambda\) is known
  • Rate of occurrence \(\alpha\) is constant
    • Probability of \(k\) arrivals in an interval is constant
  • Occurence of events are independent of each other
  • Memory-less process
    • \(f(x \vert T \le t + \Delta t)\) is independent of \(f(x \vert T \le t)\)
  • Events cannot occur simultaneously; there is at least a tiny interval between events
Last Updated: 2024-12-26 ; Contributors: AhmedThahir, web-flow

Comments