Skip to content

Continuous Random Variable

takes value on a continuum of scale, ie, can take any decimal value

PDF

\[ \begin{aligned} f(x) &\ge 0 \\ \int f(x) \ \mathrm{d} x &= 1 \end{aligned} \]

CDF

\[ \begin{aligned} F(x) &= P(X \le x) \\ &= \int\limits_{- \infty}^x f(x) \ \mathrm{d} x \\ P(a \le X \le b) &= P(a < x < b) \\ &= \int\limits_a^b f(x) \ \mathrm{d} x \end{aligned} \]

Terms

Formula
\(E(x)\) \(\int x \cdot f(x) \ \mathrm{d} x\)
\(E(x^2)\) \(\int x^2 \cdot f(x) \ \mathrm{d} x\)

(others are the same as discrete)

Distributions

Distribution Comment \(f(x)\) \(\mu\) \(\sigma^2(x)\) Skewness Kurtosis Modality Symmetry Diagram
Uniform \(\begin{cases} \frac 1 {B-A} & A \le x \le B \\ 0 & \text{elsewhere} \end{cases}\) \(\dfrac {B+A} 2\) \(\dfrac 1 {12} (B-A)^2\) βœ…
Normal/
Gaussian/
Bell-Curve/
\(z\)
\(\dfrac {1}{\sigma \sqrt{2\pi}} \exp \left\{ \dfrac {-1}{2} \left(\dfrac{x-\mu}{\sigma} \right)^2 \right\}\) \(\begin{aligned} P(x<k) &= P \left(z<\frac{k-\mu}{\text{SD}} \right) \\ P(x>k) &= P(x < -k) \end{aligned}\) 0 1 0 3 1 βœ… Standard Normal Distribution with indicated probabilities.
Gumbel/Type 1 Extreme Value Normal distribution with skew and fatter tails \(\exp \Bigg[ - \exp \left( \dfrac{-(x-\mu)}{\sigma} \right ) \Bigg]\) \(\mu + \sigma \gamma_e\)
\(\gamma_e \approx 0.577\) (Euler’s constant)
\(\dfrac{\pi^2 \sigma^2}{6}\) gumbel_distribution
Log-Normal Type of gumbel distribution
Student
\(t\)
Tends to normal distribution for large dof \(\dfrac{\bar x-\mu}{s/\sqrt{n}}\) 0 >1 βœ…
Binomial \(\to\) Normal Approx \(np \ge 10\) or \(n(1-p) \ge 10\) Normal distribution \(\begin{aligned} x' &= x \pm 0.5 \\ z &= \frac{x' - \mu}{\text{SD}} \end{aligned}\) \(np\) \(np(1-p)\)
Chi-Square
\(\chi^2\)
PDF of \(\sum \limits_i N_i(\mu_i, \sigma_i)^2\), where \(N_i\) is independent of \(N_j, \ \forall i \ne j\) \(\dfrac{(n-k)s^2}{\sigma^2}\)

\(\lambda = \sum_{i=1}^n \mu_i^2\)
\((n-k)+\lambda\) \(2[(n-k) + 2 \lambda]\)
Gamma time between \(n\) occurrences \(\dfrac{1}{B^\alpha \lceil\alpha} \cdot x^{\alpha-1} \cdot \exp \left(\dfrac{-x}{\beta} \right)\) \(\alpha \beta\) \(\alpha \beta^2\)
Exponential time between successive/consecutive \(\lambda \cdot \exp(-\lambda x)\) \(\dfrac 1 \lambda = \beta\) \(\dfrac 1 {\lambda^2} = \beta^2\)
Power Law \(L(x) \cdot x^{-(\alpha-1)}; x > x_\min\) image-20240209204700754
Pareto Power law with \(\alpha =1.16\)
Average value of those whose value is greater than \(y\) is \(y\) times the constant \(\lambda/(\lambda-1)\)
\(\lambda\) controls the thickness of tail
\(P(X > x) = \begin{cases} (x_m/x)^\lambda, & x \ge x_m \\ 1, & x < x_m \end{cases}\)
Top \(q\)th percentiles share = \((q/100)^{(\lambda-1)/\lambda}\)
\(1 - F(x) = \bar F(x) = P(X>x)\) Size distribution
Sizes of cities
Income
Family names
Popularity
Social network patterns
Crime per convict
Sizes of large earthquakes
Power outages
Zipf Pareto with \(\lambda=1\) Empirical city size
Firm size
Equivalent to relationship of slope of -1 between log rank of city (based on city size) and log of population
Laplacian/
Double-Exponential
Distribution of diff of two iid exponential vars \(\dfrac{1}{2b} \exp \left( \dfrac{- \vert x-\mu \vert}{b} \right)\) Normal and Laplace Distributions in Differential Privacy
Logistic/
Sigmoid
\(\dfrac{1}{b} \times \dfrac{\exp \left(\dfrac{-(x-\mu)}{b} \right)}{1+\exp \left(\dfrac{- (x-\mu )}{b} \right)}\) \(F(x) = \dfrac{1}{1+\exp \left(\dfrac{-(x-\mu)}{b} \right)}\) \(0\) \(b\dfrac{\pi}{\sqrt{3}}\) \(3+1.2\) image-20240619151119900
image-20240619151220309
  • DOF = Degrees of freedom
  • \(n\) for sampling
  • \(n-k-1\) for regression

  • \(\lambda\) = mean no of occurances per unit time \(\lambda = \alpha\text{(poisson)}\)

  • \(\beta\) = mean time b/w occurances \(\beta = \frac 1 \lambda = \frac 1 {\alpha\text{(poisson)}}\)
  • \(\alpha\) = shape parameter it is the average number of occurrences of an event

Pareto Distribution

Last Updated: 2024-05-14 ; Contributors: AhmedThahir

Comments