Skip to content

Sampling

Used when it is not feasible to analyze the entire population

Estimation: Using the sample to estimate population parameter(s)

Population v Sample

Property Population Sample
Definition comprises of all units pertaining to a particular characteristic under study is a part of a population, which is selected such that it is representative of the entire population
Size \(N\) \(n\)
Mean \(\mu\) \(\bar x = \dfrac {\sum_i^n x_i}{n}\)
Variance \(\sigma^2\) \(s^2 = \dfrac {\sum_i^n (x_i-\bar x)^2}{n \textcolor{hotpink}{-1}}\)
Standard Deviation \(\sigma\) \(s\)

Relations

\[ \begin{aligned} \mathbb E(\bar x) &= \mu \\ \mathbb E[s^2_x] &= \sigma^2_x \\ \\ s^2_{\bar x} &= \frac{\sigma^2_x}{n} , s_{\bar x} = \frac{\sigma_x}{\sqrt n} \\ z_\text{sample} &= \frac{\bar x - \mu_x}{\sigma_x/\sqrt n } \end{aligned} \]

Bessel’s Correction

$$ \begin{aligned} \text{Var}(x) &= E[(x)^2] - (E[x])^2 \ \implies E[(x)^2] &= \sigma^2 + \mu^2 \ \ \text{Var}(\bar x) &= E[(\bar x)^2] - (E[\bar x])^2 \ \implies E[(\bar x)^2] &= \dfrac{\sigma^2}{n} + \mu^2 \ \ \implies \sigma^2 &= s^2_\text{uncorrected} + \text{Bias} \ &= s^2_\text{uncorrected} + \dfrac{\sigma^2}{n} \

\implies \sigma^2 &= s^2_\text{uncorrected} \times \dfrac{n}{\text{DOF}} \ &= s^2_\text{uncorrected} \times \underbrace{\dfrac{n}{n-1} }_{\mathclap{\text{Bessel's Correction}}} \end{aligned} $$

Reasoning

  • Degrees of freedom: We lose a degree of freedom when estimating \(\bar x\)
  • Bias correction: While sampling with small sample size, less probable elements don’t show up which gives us an underestimated sample dispersion

Sample vs Population Standard Deviation

For Different Distributions

image-20240128195458648

Higher the skew of population distribution, larger the sample size required to approximate the sample size to the population

For the different population size

image-20240128195800706

Sample vs Population SD does not depend on population size

Interval Estimation

Confidence % \(= 1- \alpha\)

Most common is \(95\%\) confidence interval estimate

\[ \begin{aligned} 1 - \alpha &= 0.95 \\ \alpha &= 0.05 \\ \alpha/\small 2 &= 0.025 \end{aligned} \]

Population mean

\(\sigma^2\) \(n\) statistic \(\mu\)
known any \(z = \dfrac {\bar x - \mu}{\sigma / \sqrt n}\) \(\bar x \pm z_{\alpha/\small 2} \cdot \dfrac \sigma {\sqrt n}\)
unknown \(>30\) \(z = \dfrac {\bar x - \mu}{s/ \sqrt n}\) \(\bar x \pm z_{\alpha/\small 2} \cdot \dfrac s {\sqrt n}\)
unknown \(\le 30\) \(t = \dfrac {\bar x - \mu}{s / \sqrt n}\) \(\bar x \pm t_{\small n-1, \alpha/\small 2} \cdot \dfrac s {\sqrt n} \\(n-1) \to \text{deg of freedom}\)
\[ \begin{aligned} n &= \left( \frac{z_{\alpha/\small 2} \cdot \sigma}{w} \right)^2 \\ &= \left( \frac{z_{\alpha/\small 2} \cdot s}{w} \right)^2 \end{aligned} \]

where

  • \(n\) is sample size
  • \(w\) is distance from \(\mu\) = \(\frac{\text{interval width}}{2}\)

Proportion

\[ \begin{aligned} p &= \hat p \pm z_{\alpha/\small2} \sqrt {\frac{\hat p \hat q}{n}} \\ \hat p &= \frac x n = \frac{\text{Favorable no of cases}}{\text{Total no of cases}} \\ \hat q &= 1 - \hat p \end{aligned} \]

Population Variance / SD

\[ \begin{aligned} \sigma^2 &= \left[ \frac{(n-1)s^2}{\chi^2_{(n-1), (\alpha/\small 2)}}, \frac{(n-1)s^2}{\chi^2_{(n-1), (1-\alpha/\small 2)}} \right] \\ \sigma &= \sqrt {\sigma^2} \end{aligned} \]

Inequalities

Let \(x\) be a random variable such that \(x_i \in [a, b]\)

Consider

  • sample size \(n\)
  • \(\epsilon > 0\)

Hoeffding’s Inequality

\[ \begin{aligned} P (\vert \hat \mu − \mu \vert > \epsilon) & \le 2 \exp \left[ \dfrac{-2 n \epsilon^2}{(b-a)^2} \right] \\ \sum_{b}^B P (\vert \hat \mu_b − \mu_b \vert > \epsilon) & \le 2 \exp \left[ \dfrac{-2 n \epsilon^2}{(b-a)^2} \right] \times B \end{aligned} \]

where

  • \(\mu\) is any parameter and \(\hat \mu\) is its estimate
  • \(n>0\)
  • \(\epsilon > 0\)
  • \(B=\) no of ‘bins’

Notes

  • We want low \(P (\vert \hat \mu − \mu \vert > \epsilon)\)
  • Even though \(P (\vert \hat \mu − \mu \vert > \epsilon)\) will depend on \(\mu\), the bound is independent of \(\mu\)

Vapnik-Chervonenkis Inequality

\[ P (\vert \bar x − \mu \vert > \epsilon) \le 4 \cdot m_h(2n) \cdot \exp \left[ \dfrac{-1}{8} n \epsilon^2 \right] \]

Where \(m_h(n) = 2^n\)

Last Updated: 2024-05-14 ; Contributors: AhmedThahir, web-flow

Comments