Skip to content

Testing of Hypothesis

\(\alpha\)

  • level of significance
  • size of critical region

Confidence level = \((1-\alpha) \times 100 \%\)

The entire distribution is divided into 2 regions

  1. Critical Region Region of rejection of \(H_0\) it is decided based on \(H_1\)
  2. Acceptance Region Region of acceptance of \(H_0\)

Population Mean

\[ \begin{aligned} H_0: \mu &= \mu_0 & &\text{(Null Hypothesis)} \\ H_1: \mu &< \mu_0, \mu \ne \mu_0, \mu > \mu_0 & &\text{(Alternative Hypothesis)} \\ \end{aligned} \]
\(\sigma^2\) \(n\) Test Statistic/Probability Distribution
known any \(z_c = \frac{\bar x - \mu_0}{\sigma/\sqrt n}\)
unknown \(>30\) \(z_c = \frac{\bar x - \mu_0}{s/ \sqrt n}\)
unknown \(\le 30\) \(t_c = \frac{\bar x - \mu_0}{s / \sqrt n}\)

Critical Region

Left-Tailed Two-Tailed Right-Tailed
\(H_1\) \(\mu < \mu_0\) \(\mu \ne \mu_0\) \(\mu > \mu_0\)
p-value \(F(z_c)\)
\(\alpha(t-\text{dist})\)
\(2[ F(-z_c) ]\)
\(2 \alpha(t-\text{dist})\)
\(F(-z_c)\)
\(\alpha(t-\text{dist})\)
Cases Accept \(H_1\) if
\(\begin{aligned} z_c & \le -z_\alpha \\ t_c &\le -t_{(n-1), \alpha} \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)
Accept \(H_1\) if
\(\begin{aligned} z_c \le -z_{\alpha/2} &\text{ or } z_c \ge +z_{\alpha/2}\\ t_c \le -t_{(n-1), (\alpha/2)} &\text{ or } t_c \ge +t_{(n-1), (\alpha/2)} \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)
Accept \(H_1\) if
\(\begin{aligned} z_c &\ge +z_\alpha \\ t_c &\ge +t_{(n-1), \alpha} \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)

Proportion

\[ \begin{aligned} H_0: p &= p_0 & &\text{(Null Hypothesis)} \\ H_1: p &< p_0, p \ne p_0, p > p_0 & &\text{(Alternative Hypothesis)} \\ z_c &= \frac{\hat p - p_0}{ \sqrt{ \frac{p_0(1-p_0)}{n} } } & & \hat p = \frac x n = \text{Estimated value of } p\\ \end{aligned} \]

Critical Region

Left-Tailed Two-Tailed Right-Tailed
\(H_1\) \(p < p_0\) \(p \ne p_0\) \(p > p_0\)
p-value \(F(z_c)\) \(2[ F(-z_c) ]\) \(F(-z_c)\)
Cases Accept \(H_1\) if
\(\begin{aligned}z_c &\le -z_\alpha \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)
Accept \(H_1\) if
\(\begin{aligned} z_c \le -z_{\alpha/2} &\text{ or } z_c \ge +z_{\alpha/2} \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)
Accept \(H_1\) if
\(\begin{aligned} z_c &\ge +z_\alpha \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)

Variance/SD

\[ \begin{aligned} H_0: \sigma^2 &= \sigma^2_0 & &\text{(Null Hypothesis)} \\ H_1: \sigma^2 &< \sigma^2_0, \sigma^2 \ne \sigma^2_0, \sigma^2 > \sigma^2_0 & &\text{(Alternative Hypothesis)} \\ \chi_c^2 &= (n-1) \frac{s^2}{\sigma_0^2} \end{aligned} \]

Critical Region

Left-Tailed Two-Tailed Right-Tailed
\(H_1\) \(p < p_0\) \(p \ne p_0\) \(p > p_0\)
p-value 1 - \(\alpha\)(table) 1 - \(\alpha\)(table) 1 - \(\alpha\)(table)
Cases Accept \(H_1\) if
\(\begin{aligned}\chi_c^2 &\le \chi^2_{(n-1), (1-\alpha)} \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)
Accept \(H_1\) if
\(\begin{aligned}\chi_c^2 \le \chi^2_{(n-1), (1-\alpha/2)} &\text{ or } \chi_c^2 \ge \chi^2_{(n-1), (\alpha/2)} \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)
Accept \(H_1\) if
\(\begin{aligned}\chi_c^2 &\ge \chi^2_{(n-1), \alpha} \\ p &\le \alpha \end{aligned}\)

else accept \(H_0\)

Errors

\(H_0\) is true \(H_0\) is false \(H_0\) is incorrect
Reject \(H_0\) Type 1 Error = \(\alpha\) Correct Type 3 Error
Right answer to the wrong question
Accept \(H_0\) Correct Type 2 Error = \(\beta\)

Type 1 error is alright, but Type 2 error is dangerous

  • \(\alpha\) = P(reject \(H_0\) | \(H_0\) is true)
  • \(\beta\) = P(accept \(H_0\) | \(H_0\) is false)

Power of Test

\[ \text{Power of Test} = 1 - \beta \]

Greater the power of test, the better means that we can more accurately detect when \(H_0\) is false

Last Updated: 2024-05-12 ; Contributors: AhmedThahir

Comments