06 2nd Law
Terms¶
Term | Meaning | Formula |
---|---|---|
\(\eta\) | Efficiency | \(\frac{\text{Desired Output}}{\text{Input}}\) |
COP | Coefficient of Performance | \(\frac{\text{Desired Output}}{\text{Input}}\) |
\(q\) | Calorific/Heating Value | \(\frac Q m\) |
Gravimetric | mass terms |
Devices¶
Device | Purpose | |||
---|---|---|---|---|
Heat Engine | - Heat \(\to\) Work - cycle | $\begin{aligned} \eta_{\small\text{HE}} &= \frac{W_\text{net, out}}{Q_\text{H}} \ | ||
&= 1 - \frac{Q_\text{L}}{Q_\text{H}} \end{aligned}$ | \(\eta_\text{HE} < 1\) Kelvin-Plank Statement | \(\begin{aligned} \Delta U &= 0 \\ Q_\text{net} &= W_\text{net} \\ W_\text{net, out} &= Q_\text{in} - Q_\text{out} \\ &= Q_\text{H} - Q_\text{L} \end{aligned}\) | ||
Refridgerator | - maintain cool temp - Reverse HE | $\begin{aligned} \text{COP}R &= \frac{Q\text{L}}{Q_\text{net, in}} \ | ||
&= \frac{1}{ \frac{Q_\text{H}}{Q_\text{L}} - 1 } \end{aligned}$ | \(\text{COP}_R\) can be > 1 | |||
Heat Pump | - maintain warm temp - Reverse HE | $\begin{aligned} \text{COP}{HP} &= \frac{Q\text{H}}{W_\text{net, in}} \ | ||
&= \frac{1}{ 1 - \frac{Q_\text{L}}{Q_\text{H}} } \end{aligned}$ | \(\begin{aligned} \text{COP}_{HP} &= \text{COP}_{R} + 1 \\ \text{COP}_{HP} &> \text{COP}_{R} \end{aligned}\) |
flowchart LR
subgraph Heat Engine
direction LR
a([Warm]) -->
|Q<sub>H</sub>| b[System] -->
|Q<sub>L</sub>| c([Cool])
b --> |W<sub>net</sub>| d[ ]
end
subgraph Refridgerator/Heat Pump
direction LR
r([Cool]) -->
|Q<sub>L</sub>| q[System] -->
|Q<sub>H</sub>| p([Warm])
s[ ] --> |W<sub>net</sub>| q
end
Carnot Cycle¶
For Heat Engine
Adiabatic means polytropic process with**out** heat transfer
Transition | Characteristic | Constant | Signs | Work |
---|---|---|---|---|
1 - 2 | Isothermal Expansion Heat Absorbed | \(PV = c\) | $W_{12} > 0 \ | |
Q_\text{H} > 0$ | \(P_1 V_1 \ln \vert \frac{V_2}{V_1} \vert\) \(P_2 V_2 \ln \vert \frac{P_1}{P_2} \vert\) | |||
2 - 3 | Adiabatic Expansion | \(PV^\gamma = c\) | \(W_{23} > 0\) | \(\frac{P_3 V_3 - P_2 V_2}{1-n}\) |
3 - 4 | Isothermal Compression Heat Released | \(PV = c\) | $W_{34} < 0 \ | |
Q_\text{L} < 0$ | \(P_3 V_3 \ln \vert \frac{V_4}{V_3} \vert\) \(P_4 V_4 \ln \vert \frac{P_3}{P_4} \vert\) | |||
4 - 1 | Adiabatic Compression | \(PV^\gamma = c\) | \(W_{41} < 0\) | \(\frac{P_1 V_1 - P_4 V_4}{1-n}\) |
\[ \begin{aligned} W_\text{net, out} &= W_{12} + W_{23} + W_{34} + W_{41} \\ \eta &= \frac{W_\text{net, out}}{Q_\text{H}} \\ &= 1 - \frac{Q_\text{L}}{Q_\text{H}} \\ &= 1 - \frac{T_L}{T_H} \end{aligned} \]
Make sure of the signs when calculating \(W_\text{net, out}\)
Reverse Carnot Cycle¶
For Refridgerator, Heat Pump
\(Q_\text{L} > 0, Q_\text{H} < 0\)
\[ \begin{aligned} W_\text{net, in} &= W_{12} + W_{23} + W_{34} + W_{41} \\ \text{COP}_R &= \frac{Q_\text{L}}{W_\text{net, in}} \\ \text{COP}_{HP} &= \frac{Q_\text{H}}{W_\text{net, in}} \end{aligned} \]