Skip to content

09 Inclusion Exclusion

Principle of Inclusion-Exclusion

\(n(A)\) can also be represented as \(|A|\)

Basic Counting

Sum Rule

Let \(A_1 , A_2, \dots, A_n\) be disjoint(mutually-exclusive) sets

\(n (A_1 \cup A_2 \cup \dots \cup A_n) = n(A_1) + n(A_2) + \dots + n(A_n)\)

OR operation

Product Rule

\(n (A_1 \cap A_2 \cap \dots \cap A_n) = n(A_1) \times n(A_2) \times \dots \times n(A_n)\)

AND operation

Inclusion-Exclusion

  • \(n(A \cup B) = 1 \iff\) mutually-exhaustive
  • \(n(A \cap B) = 0 \iff\) mutually-exclusive

Formulae

  1. \(n(A \cup B) = n(A) + n(B) - n(A \cap B)\)

  2. \[ \begin{aligned} n(A \cup B \cup C)&= n(A) + n(B) + n(C) \\ & \qquad - n(A \cap B) - n(B \cap C) - n(A \cap C) \\ & \qquad + n(A \cap B \cap C) \end{aligned} \]
  3. \(A' = S - A\)

  4. Demorgan

  5. \((A \cup B)' = A' \cap B'\)

  6. \((A \cap B)' = A' \cup B'\)
\[ \begin{aligned} |A'| &= |U| - |A| \\ |A-B| &= |A \cup B'| \\ &= |A| - |A\cup B| \\ |A \cap B \cap C'| &= |A \cap B| - |A \cap B \cap C| \\ |A \cap B' \cap C| &= |A \cap C| - |A \cap B \cap C| \\ |A \cap B' \cap C'| &= |B' \cap C'| - |A' \cap B' \cap C'| \end{aligned} \]

Gen Principle

\[ \begin{aligned} \vert A_1 \cup A_2 \cup \ldots \cup A_n \vert &= S_1 - S_2 + S_3 - \ldots + (-1)^{n-1} S_n \\ &= \sum\limits_{i = 1}^n |A_i| - \sum\limits_{i,j} |A_i \cap A_j| + \sum\limits_{i, j, k} |A_i \cap A_j \cap A_k| \\ & \qquad + \ldots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n| \end{aligned} \]

Selection

Permutation Combination
ordered? Y N
with rep \(n^r\) \(V(n,r)\)
without rep \(nP_r = \frac{n!}{(n-r)!}\) \(nC_r = \frac{n!}{r!\ (n-r)!} = nC_{n-r}\)

\(nC_r = nP_r = 0 \iff n<r\)

The no of \(r\) combinations of \(n\) distinct objects with unlimited repetitions

\[ \begin{aligned} &= V(n,r) \\ &= (n-1+r)C_r &= (n-1+r)C_{n-1} \\ &= \frac{(n-1+r)!}{r! \ (n-1)!} \end{aligned} \]

Uses

  • This is the no of ways of distributing \(r\) similar balls into \(n\) number boxes
  • no of non-negative integer solutions of \(x_1 + x_2 + \dots + x_n = r\)
  • no of binary nos with \((n-1)\) ones and \(r\) zeros

Integral Solutions

The no of non-negative integer solutions is given by \(V(n,r)\)

\[ \set{ x_1 a_1, x_2 a_2, \dots, x_n a_n } \iff x_1 + x_2 + \dots + x_n = r \]

Derangement

special type of permutation of any \(n\) objects such that no number takes it’s own place

\(i_1, i_2, \dots, i_n \iff i_1 \ne 1, i_2 \ne 2, i_n \ne n\)

normally, for any arrangement of \(n\) numbers, no of arrangements = \(n!\)

\(D_n =\) no of derangments possible for derangement of \(n\) numbers

\[ \begin{aligned} D_1 &= 0 \\ D_2 &= 1 \\ D_3 &= 2 \qquad \set{(3, 1, 2), (2, 3, 1)} \\ \vdots & \\ D_n &= n! \left[ 1- \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right] \\ &= n! \left[ 1 + \sum_{i=1}^n (-1)^i \frac{1}{i!} \right] \end{aligned} \]
Last Updated: 2024-01-24 ; Contributors: AhmedThahir

Comments