Skip to content

04 Linear DE

Linear DE General Form

\[ y' + P y = Q \]

where \(y\) is the dependent variable

Solution

  1. Find IF \(= e^{\int P(x) dx}\)

  2. Find general solution

\[ y \times IF = \int \Big( Q \times IF \Big) dx \quad + c \]

Bernoulli’s DE

\[ y' + P y = Q y^n \]

Solution

  1. Divide both sides by \(y^n\)
\[ y^{-n} y' + P y^{1-n} = Q \]
  1. Take \(z = y^{1-n}\)
\[ \begin{aligned} z' &= (1-n) y^{(1-n)-1} y' \\ y^{-n} y' &= \left( \frac{1}{1-n} \right) z' \end{aligned} \]
  1. Convert into a Linear DE
\[ \begin{aligned} \left( \frac{1}{1-n} \right) z' + P z &= Q \\ z' + \underbrace{(1-n) P}_{P\text{ of linear DE}} \ z &= (1-n) Q \end{aligned} \]
  1. Solving using Linear DE method in terms of \(z\)
\[ \begin{aligned} \text{IF} &= (1-n) \int P dx \\ z \times \text{IF} &= (1-n) \int (Q \times \text{IF}) dx \quad + c \end{aligned} \]
  1. Put \(z = y^{1-n}\) back into this
Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments