Skip to content

08 Constant Coefficient

2nd Order Homogeneous DE with constant coefficients

\[ y'' + py' + qy = 0 \]

where \(p, q\) are constants

Consider \(y = e^{mx}\) as a possible solution, where \(m\) = unknown constant. So our goal is to find \(m\).

Then

\[ y' = m \cdot e^{mx} \\ y' = m^2 \cdot e^{mx} \\ \implies (m^2 \cdot e^{mx}) + p(m \cdot e^{mx}) + qe^{mx} = 0 \\ e^{mx} ( m^2 + pm + q ) = 0 \\ \]

Auxiliary equation

\[ e^{mx} \ne 0 \\ \implies ( m^2 + pm + q ) = 0 \]

Solve this to get the value(s) of unknown \(m\)

Roots General Solution \(y\)
real and distinct \(m_1, m_2\) \(c_1 e^{m_1 x} + c_2 e^{m_2 x}\)
equal roots \(m_1 = m_2 = m\) \(e^{mx} (c_1 + c_2 x )\)
Complex roots \(m_1, m_2 = a \pm ib\) \(e^{ax} (c_1\cos bx + c_2 \sin bx )\)

Boundary Value Problems

Using given ‘initial conditions’, we need to find the values of \(c_1\) and \(c_2\)

Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments