Skip to content

11 Undetermined Coefficients

The undetermined coefficient method is possible for a few standards functions such as \(R(x) = e^{ax}, \sin(ax), \cos(ax),\) polynomials. This method also requires a trial solution to compute the required particular solution.

Note If RHS \(= \sin(2x) + \cos(2x)\), then we can consider it as a single function \(R(x)\)

Consider

  • Constants \(l, k, a, b \in R\)
  • Undetermined Coefficients \(A, B, A_0, A_1, \dots, A_n\) (unknown constant)

The exception cases are for preventing duplication of terms, and hence prevent linear dependency of the solutions.

\(R(x)\) Trial Particular Solution Exception based on root \(m\) of auxilary eqn
\(l e^{ax}\) \(A e^{ax}\)
\(A x e^{ax}\) \(m_1 = a\) or \(m_2 = a\)
\(A x^2 e^{ax}\) \(m_1 = m_2 = a\)
\(l \cos(ax)\)
\(l \sin(ax)\)
\(l \cos(ax) \pm k \sin(ax)\)
\(A \cos ax + B \sin ax\)
\(x (A \cos ax + B \sin ax)\) \(m= 0 \pm ai\)
\(a_0 + a_1 x + \dots + a_n x^n\)
(\(n^{\text{th}}\) degree polynomial)
\((A_0 + A_1 x + \dots + A_n x^n)\)
\(x(A_0 + A_1 x + \dots + A_n x^n)\) \(m = 0\)
\(e^{ax} \cos bx\)
\(e^{ax} \sin bx\)
\(e^{ax} ( \cos bx + \sin bx )\)
\(e^{ax} ( A \cos bx + B \sin bx )\)
\(xe^{ax} ( A \cos bx + B \sin bx )\) \(m = a \pm bi\)

Trick for product of 3 functions

If \(y_g\) and the trial particular solution are similar

  • instead of using \((uvw)' = uvw' + uv'w + u'vw\)
  • we can take
\[ x e^x ( A \cos x + B \sin x) \to x \phi \]

Example

\[ \begin{aligned} y'' - 2y' + 2y &= e^x \sin x \\ x e^x ( A \cos x + B \sin x) & \to x \phi \\ {y_g}'' - 2{y_g}' + 2{y_g} &= 0 \\ \implies \phi'' - 2\phi' + 2\phi &= 0 \end{aligned} \]
Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments