Skip to content

14 Laplace

Laplace Transformation

Converting differential calculus into algebra

flowchart LR
DE -->
|LT| ae[Algebraic] -->
|Solving| sa[Algebraic Solution] -->
|ILT| sd[DE Solution] -.->
DE

LT Function

Laplace Transform

\[ \begin{aligned} L\{ f(t) \} &= \int\limits_0^\infty e^{-st} f(t) \cdot dt \quad \text{ (or a function of } x)\\ &= F(s) \end{aligned} \]
\(f(t)\) Time Domain Function
\(s\) Laplace Variable (real/complex)
\(F(s)\) Laplace Domain Function

ILT Function

Inverse Laplace Transform

\[ L^{-1} \{ F(s) \} = f(t) \]

Basic Rules

Situation LT ILT
Constant Coeffient \(L\Big(k f(t) \Big) = k L(t)\) \(L^{-1}(k s) = k L^{-1} \Big( F(s) \Big)\)
Sum \(L \Big( f(t) \pm g(t) \Big) = L \Big( f(t) \Big) \pm L \Big( g(t) \Big)\) \(L^{-1} \Big( F(s) \pm G(s) \Big) = L^{-1} \Big( F(s) \Big) \pm L^{-1} \Big( G(s) \Big)\)

LT of Standard Functions

\(f(t)\) \(L\Big( f(t) \Big)\)
\(1\) \(\frac{1}{s}\)
\(k\) \(\frac{k}{s}\)
\(e^{at}\) \(\frac{1}{s\textcolor{orange}{-}a}\)
\(\cos(at)\) \(\frac{s}{s^2 + a^2}\)
\(\sin(at)\) \(\frac{a}{s^2 + a^2}\)
\(\cosh(at)\) \(\frac{s}{s^2 - a^2}\)
\(\sinh(at)\) \(\frac{a}{s^2 - a^2}\)
\(t^n\) $\begin{cases} \dfrac{n!}{s^{n+1}}, & n \le 0 \
\dfrac{\Gamma(n+1)}{s^{n+1}}, & \text{otherwise} \end{cases}$

where \(\Gamma\) is gamma function
\(e^{at} f(t)\)
(exponent shifting rule)
\(F(s \textcolor{orange}{-} a) = \Big\{ F(s) \Big\}_{s \to s-a}\)
\(u_a(t)\) \(\frac{e^{-as}}{s}\)
\(\delta (t)\) \(1\)

Unit Step Function

\[ u_a (t) = \begin{cases} 0, & t < a \\ 1, & t \ge a \end{cases} \]

Unit Impulse Function

\[ \delta (t) = \lim_{\epsilon \to 0} f_\epsilon(t) \]
\[ f_\epsilon(t) = \begin{cases} \dfrac{1}{\epsilon}, & 0 \le t \le \epsilon \\ 0, & t > \epsilon \end{cases} \]
\[ \begin{aligned} L\Big( \delta(t) \Big) &= \lim_{\epsilon \to 0} L\Big( f_\epsilon (t) \Big) \\ &= \lim_{\epsilon \to 0} \left[ \int\limits_0^\infty e^{-st} f_\epsilon(t) \cdot dt \\ \right] \\ & \dots \\ &= 1 \end{aligned} \]

Sum of GP

\[ \sum GP = \frac{a}{1-r} \]

Gamma Function

\[ \Gamma(x) = \int_0^\infty e^{-x} x^{n-1} dx \]

Properties

\[ \begin{aligned} \Gamma \left(\frac{1}{2} \right) &= \sqrt{\pi} \\ \Gamma(n) &= (n-1)! \\ &= (n-1) \cdot \Gamma(n-1) \\ n! &= \Gamma (n+1) \\ \end{aligned} \]

IDK

When doing nested transformations, do it as Part 1 and \(f(part 1)\) like how you did it for grade 12 integrals \(I_1 + I_2\)

Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments