Skip to content

18 Application of Fourier Series

1D Wave Equation

Assuming that the vibration only happens in one direction.

\[ \begin{aligned} a^2 &= \frac{T}{m} > 0 \\ \frac{\partial^2 y}{\partial t^2} &= a^2 \left( \frac{\partial^2 y}{\partial x^2} \right) \end{aligned} \]

\(a \ne\) acceleration

Conditions

For
Initial Vertical Displacement at Left End \(y(0, t)\) \(0\) \(\forall t\)
Initial Vertical Displacement at Right End \(y(\pi, t)\) \(0\) \(\forall t\)
Vertical Velocity \(\frac{\partial y}{\partial t}(x, 0)\) \(0\) \(0 \le x \le \pi\)
The function \(y(x, 0)\) \(f(x)\) \(0 \le x \le \pi\)

Solution

Solution of equation under the initial conditions

\[ \begin{aligned} y(x, t) &= \sum_{n = 1}^\infty b_n \sin(nx) \textcolor{hotpink}{\cos (nat)} \\ b_n &= \frac{2}{\pi} \int\limits_0^\pi f(x) \sin(nx) dx \end{aligned} \]

1D Heat Equation

Fourier Thermal Law

The amount of heat flowing through a heat-producing body \(H\)

  • \(H \propto\) temperature gradient
  • \(H \propto\) area of cross-section
  • \(H \frac{1}{\propto}\) resistance

Time 0 is the time at which the external temperature is placed

Formula

\(\alpha^2\) is thermal diffusability.

\[ \begin{aligned} \alpha^2 &= \frac{k}{\rho c} > 0\\ \frac{\partial u}{\partial t} &= \alpha^2 \left( \frac{\partial^2 u}{\partial x^2} \right) \end{aligned} \]

Conditions

For
Initial Heat at Left End \(u(0, t)\) 0 \(\forall t\)
Initial Heat at Right End \(u(\pi, t)\) 0 \(\forall t\)
\(u(x, 0)\) \(f(x)\) \(0 \le x \le \pi\)

Solution

Solution of equation under the initial conditions

\[ \begin{aligned} u(x, t) &= \sum_{n = 1}^\infty b_n \sin (nx) \textcolor{hotpink}{e^{-n^2 \alpha^2 t}} \\ b_n &= \frac{2}{\pi} \int\limits_0^\pi f(x) \sin(nx) dx \end{aligned} \]
Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments