Skip to content

22 Bessel

Bessel’s DE

Family of differential equation, with some constant value \(p\)

\[ x^2y'' + xy' + (x^2-p^2) y = 0 \]

Bessel’s Function

is the solution of Bessel’s DE. Denoted by \(J_p(x)\)

\(x=0\) is a regular singular point of equation. Solving using Frobenieus Series method gives 2 initial roots as \(m = \pm p\)

\(+p\) \(-p\)
\(J(x)\) \(\sum\limits_{n=0}^\infty \dfrac{(-1)^n \left(\frac{x}{2}\right)^{2n \textcolor{hotpink}{+p}}}{n!(n \textcolor{hotpink}{+p})!}\) \(\sum\limits_{n=0}^\infty \dfrac{(-1)^n \left(\frac{x}{2}\right)^{2n \textcolor{hotpink}{-p} }}{n!(n \textcolor{hotpink}{-p} )!}\)

The above 2 formula are not directly possible for negative integers, as \((n-p)!\) is not valid when it is negative
Use gamma function

General Solution

\[ y = c_1 J_p(x) + c_2 J_{-p} (x) \]

Properties

To Remember

\[ \begin{aligned} J_\frac{1}{2}(x) &= \sin x \sqrt{ \frac{2}{\pi x} } \\ J_\frac{-1}{2}(x) &= \cos x \sqrt{ \frac{2}{\pi x} } \\ J_{p-1}(x) + J_{p+1}(x) &= \frac{2p}{x} J_p(x) \end{aligned} \]

Other Properties

\[ \begin{aligned} \Big( x^{p} J_p(x) \Big)' &= x^{p} J_{p-1} (x) \\ \Big( x^{-p} J_p(x) \Big)' &= - x^{-p} J_{p+1} (x) \\ {J_p}'(x) + \frac{p}{x} J_p(x) &= J_{p-1}(x) \\ {J_p}'(x) - \frac{p}{x} J_p(x) &= - J_{p+1}(x) \\ J_{p-1}(x) - J_{p+1}(x) &= 2 {J_p}'(x) \end{aligned} \]
Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments