Skip to content

State Space Modelling

Representation of a system that replaces an \(n\)th order differential equation with a single first order matrix differential equation.

The state space representation is given through 2 equations

State \(\dot q(t) = Aq(t) + Bx(t)\)
Output \(y(t) = Cq(t) + Dx(t)\)

where

Dimension
\(q\) State Vector \(n \times 1\) Constant
\(A\) State Matrix \(n \times n\) Constant
\(B\) Input Matrix \(n \times r\) Constant
\(x\) Input \(r \times 1\) Function of time
\(C\) Output matrix \(m \times n\) Constant
\(D\) Direct transition matrix \(m \times r\) Constant
\(y\) Output \(m \times 1\) Function of time

Advantages

  • Concise notation: Even large systems can be represented using 2 simple equations
  • Easy to develop general techniques to solve systems, as all systems are represented by the same notation
  • Computers easily simulate first-order equations

Example

\[ 2 \dfrac{d^3 y}{dt^3} + 4 \dfrac{d^2 y}{dt^2} + 6 \dfrac{dy}{dt} + 8y = 10 u(t) \\ \implies 2 y''' + 4 y'' + 6 y' + 8y = 10 u(t) \]

Since DE is of 3rd order, there are 3 state variables $$ x_1 = y, x_2 = \dot y, x_3 = \ddot y \ \implies 2 \dot x_3 + 2 x_3 + 6 x_2 + 8x_1 = 10u(t) $$

Equation Representation

\[ \begin{aligned} \dot x_1 &= x_2 \\ \dot x_2 &= x_3 \\ \dot x_3 &= -4x_1 - 3x_2 - 2x_3 + 5u(t) \end{aligned} \]

Matrix Representation

\[ \begin{aligned} \begin{bmatrix} \dot x_1 \\ \dot x_2 \\ \dot x_3 \end{bmatrix} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} u(t) \\ y &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{aligned} \]

Representation of Kalman Filter

\[ x_k = A x_{k-1} + B u_{k-1} + w_{k-1} \]
\[ z_k = H x_k + v_k \]

image-20240212193715764

image-20240212194243408

Last Updated: 2024-05-12 ; Contributors: AhmedThahir, web-flow

Comments