Skip to content

Unsupervised Deep Learning

Traditional Autoencoder

Feature learning, dimensionality reduction, anomaly detection

flowchart LR
x1["x"] -->
|Encoder| z["z"] -->
|Decoder| x2["x̂"]
  • Usually \(\vert z \vert < \vert x \vert\), to find useful small subset of features
  • Sometimes encoder and decoder share weights
  • Use encoder to initialize a supervised model

Error function will be \(u_i = x_i - \hat x_i\)

Variational Autoencoder

  • Bayesian
  • Useful to generate new data

GAN

Generative Adversarial Networks

flowchart LR
n[/Noise/] ---> g[Generator] --> d
rd[Real Data] -->
d[Discriminator] -->
rf{Real/Fake} -.->
|Backpropagation| d & g

Multiscale

Vector Math

Last Updated: 2024-12-26 ; Contributors: AhmedThahir, web-flow

Comments