Skip to content

Auto-Regressive Models

AR Model/Process

flowchart LR
yt1["y<sub>t-1</sub>"] & ut["u<sub>t</sub>"] --> yt["y<sub>t</sub>"]

AutoRegressive Model

Variable is regressed using its own lagged values; we assume \(y_t\) depends only on its own lagged values

More lags \(\implies\) we lose more date points \(\implies\) low degree of freedom

Types

AR\((p)\) model means that there are \(p\) lags involved in the AR model

\[ \text{AR}(p) = \sum_{i=1}^{p} \alpha_i y_{t-i} + u_t \]
Model Order
(No of lags involved)
Example
AR\((1)\) 1
There is only \(1\) particular lag (not necessarily \(y_{t-1}\))
\(y_t = \beta_1 y_{t-\textcolor{hotpink}{1}} + u_t \\ \text{or} \\ y_t = \beta_1 y_{t-\textcolor{hotpink}{2}} + u_t \\ \text{or} \\ \dots \\ y_t = \beta_1 y_{t-\textcolor{hotpink}{100}} + u_t\)
AR\((2)\) 2 \(y_t = \beta_1 y_{t-\textcolor{hotpink}{1}} + u_t, y_{t-\textcolor{hotpink}{2}} + u_t \\ \text{or} \\ y_t = \beta_1 y_{t-\textcolor{hotpink}{1}} + u_t, y_{t-\textcolor{hotpink}{100}} + u_t\)

MA Model

flowchart LR
yt1["u<sub>t-1</sub>"] & ut["u<sub>t</sub>"] --> yt["y<sub>t</sub>"]

Moving Averages Model

MA\((q)\) model means that there are \(q\) lagged error differences involved in the MA model

\[ \text{MA}(q) = \sum_{i=1}^{q} \beta_i u_{t-i} + u_t \]

\(u_{t-i}\) is a multiple regression with past errors as predictors. Don’t confuse this with moving average smoothing!

Model Order
(No of lags involved)
Example
MA\((1)\) 1
There is only \(1\) particular lag (not necessarily \(u_{t-1}\))
\(y_t = \beta_1 u_{t-\textcolor{hotpink}{1}} + u_t \\ \Big(\text{ie, } y_t = \beta_1 (y_{t-\textcolor{hotpink}{1}}-E[y_{t-\textcolor{hotpink}{1}}]) + u_t \Big)\)
MA\((2)\) 2 \(y_t = \beta_1 u_{t-\textcolor{hotpink}{1}} + \beta_2 u_{t-\textcolor{hotpink}{2}} + u_t\)

ARMA

Autoregressive Moving Average Model

flowchart LR
yt1["y<sub>t-1</sub>"] & ut1["u<sub>t-1</sub>"] & ut["u<sub>t</sub>"] --> yt["y<sub>t</sub>"]

ARMA\((p, q)\) model means that there are __ involved in the ARMA model

  • \(p\) autoregressive lags
  • \(q\) moving averages lags
\[ \text{ARMA}(p, q) = \sum_{i=1}^{p} \alpha_i y_{t-i} + \sum_{i=1}^{q} \beta_i u_{t-i} + u_t \]

ARIMA Process

ARIMA\((p, d, q)\) model means

  • \(p\)
  • \(d\)
  • \(q\)
\[ \Delta^d y_t = \sum_{i=1}^p \alpha_i \Delta^d y_{t-1} + \sum_{i=1}^q \beta_i u_{t-1} + u_t \]

If \(y_t\) is an integrated series of order(\(\textcolor{hotpink}{1}\)), then we can use ARIMA\((1, \textcolor{hotpink}{1}, 1)\)

\[ \Delta y_t = \alpha_1 y_{t-1} + \beta_1 u_{t-1} + u_t \]

Box-Jenkins Decision Tree

for ARIMA Model Building

flowchart LR
im[Identify Model] -->
ep[Estimate Paramaters] -->
d -->
Forecast

d --> rm[Revise Model] --> ep

subgraph d[Diagnostics]
    r2[R_adj^2]
    RMSE
end
ACF Correlogram PACF Correlogram -> Conclusion Model
No significant spikes No significant spikes White Noise
Damps out Spikes cut off at lag \(p\) Stationary AR\((p)\)
Spikes cut off at lag \(q\) Damps out Stationary MA\((q)\)
Damps out Damps out Stationary ARMA\((p, q)\)
Spikes damp out very slowly Spikes cut off at lag \(p\) Random Walk
Non-Stationary
Monte-Carlo Simulation
Take difference

VAR

Vector AutoRegressive Model

Each input variable time series should also be stationary

\(\text{VAR}(p) \equiv \text{VAR}(1)\) where $$ \begin{aligned} z_t &= { X_t, X_{t-1}, \dots, X_{t-p+1} } \ z_{t-1} &= { X_{t-1}, X_{t-2}, \dots, X_{t-p} } \ D &= \begin{bmatrix} c \ 0_m \ \vdots \ 0_m \end{bmatrix}, A = \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_p \ I_m & 0 & \cdots & 0 \ \vdots & \ddots & \ddots & \vdots \ I_m & 0 & I_m & 0 \end{bmatrix}, F = \begin{bmatrix} u_t \ 0_m \ \vdots \ 0_m \end{bmatrix} \ \implies z_t &= D + A y_{t-1} + F \end{aligned} $$

Stationary VAR(p)

A VAR(p) model is stationary if one/both of the following

  • All eigen values of the companion matrix \(A\) have modulus less than 1
  • All roots of \(\text{det} ( \ I_m - \sum_{i=1}^p \phi_i z^p \ ) = 0\) as a function of the complex variable \(z\) are outside the complex unit circle \(\vert z \vert \le 1\)

Mean: $$ \begin{aligned} C &= (I - \sum_i^p \phi_i) \mu \ E[y_t] \implies \mu &= (I - \sum_i^p \phi_i)^{-1} C \ y_t - \mu &= \sum_i^p \phi_i[y_{t-i} - \mu] + u_t \end{aligned} $$

Optimality

Component-wise OLS estimates are equal to the GLS estimates accounting for the general case of innovation covariance matrix with possibly unequal comment variance and non-zero correlations

VARMA

Vector AutoRegressive Moving Averages

Simultaneous equations

Consider the following regression

\[ y_t = \alpha_1 {x_1}_t + \alpha_2 {x_2}_t + u_t \]

VECM

Vector Error-Correction Model

Useful when you want to perform VARMA without losing the “structure” associated with differencing to enforce stationarity

Last Updated: 2024-05-14 ; Contributors: AhmedThahir, web-flow

Comments