Skip to content

Powers & Roots

  • Base
  • Exponent
  • \(x^n = \prod \limits_{i=1}^n x\)
  • Negative number raised to even power: positive
  • Negative number raised to odd power: negative
  • Power laws
  • \(a^m \times a^n = a^{m+n}\)
  • \(a^m \times b^m = (a b)^{m}\)
  • \(a^0 = 1\)
  • \((a^m)^n = a^{mn}\)
  • \(x^{-n}=\dfrac{1}{x^n}\)
  • \((a^m b^n)^o = (a^{mo} b^{no})\)
  • \(\sqrt[n]{x} = x^{1/n}\)
  • \(x^{m/n} = (x^m)^{1/n} = (x^{1/n})^m\)
  • \(x^m=x^n \iff m=n \quad (x \not \in [-1, 0, 1])\)
  • Roots
  • Odd root of negative number will be negative
  • Odd root of positive number will be positive
  • We cannot find even root of negative number
  • Rationalizing
  • Multiply numerator and denominator by conjugate of denominator

Units Digit

  • Look for repeating pattern
  • Figure out where pattern will be at desired power
  • The units digit of any product will be influenced only by the units digits of the 2 factors

Eg: What is the unit’s digit of \(57^{123}\)

Last Updated: 2024-05-14 ; Contributors: AhmedThahir

Comments