Skip to content

Basic Model

Steps

  • Define model using nn.module
  • Cost function
  • Optimizer
  • Epochs
  • Train data
  • Predict

Device

if torch.cuda.is_available():
    device = torch.device("cuda:0")
else:
    device = torch.device("cpu")

print(f"Using {device}")

Data

Dataset

class CTDataset(Dataset):
    def __init__(self, filepath, device):
        self.x, self.y = torch.load(filepath, map_location=device)
        self.x = self.x / 255.0
        self.y = nn.functional.one_hot(self.y, num_classes=10).to(float)

    def __len__(self):
        return self.x.shape[0]

    def __getitem__(self, ix):
        return self.x[ix], self.y[ix]
# https://www.di.ens.fr/~lelarge/MNIST.tar.gz
train_ds = CTDataset("./MNIST/training.pt", device)
# test_ds = CTDataset('./MNIST/test.pt', device)

Dataloader

train, dev, valid = random_split(train_ds, [0.6, 0.2, 0.2])
train_size = min(8, len(train)) # Check if model overfits on small data, to ensure DNN actually is effective
dev_size = min(8, len(dev))

min_training_batches = 4
train_batch_size = min(32, max(1, train_size // min_training_batches))

evaluation_batch_size = min(1_024, dev_size)
train_random_sampler = RandomSampler(train, num_samples=train_size)
dev_random_sampler = RandomSampler(dev, num_samples=dev_size)

train_dl = DataLoader(
    train, sampler=train_random_sampler, batch_size=train_batch_size, drop_last=True
)

dev_dl = DataLoader(
    dev, sampler=dev_random_sampler, batch_size=evaluation_batch_size, drop_last=True
)

Model

# architecture

Train

def get_max_len(arrays):
    return max(
        [
            len(array)
            for array
            in arrays
        ]
    )

def pad(array, max_len):
    return list(np.pad(
        array,
        pad_width = (0, max_len-len(array)),
        constant_values = np.nan
    ))

def get_all_nodes(model):
    network_nodes = []

    layers = model.named_children()
    for i, layer in enumerate(layers):
        layer_nodes_formatted = []

        sub_layer = layer[-1]
        for sub_layer_node in sub_layer:
            layer_nodes_formatted.append(sub_layer_node)

        network_nodes.append(layer_nodes_formatted)

    return network_nodes

def get_summary_agg(df, agg=["mean"], precision=2):
    df = (
        df
        .groupby(["Epoch", "Train_Time", "Subset"])
        .agg({
            "Loss": agg,
            "Accuracy": ["mean"]
        })
        .round(precision)
    )
    df.columns = list(map('_'.join, df.columns.values))
    df = (
        df
        .reset_index()
        .pivot(
            index=["Epoch", "Train_Time"],
            columns="Subset",
            # values = "Accuracy"
        )
    )
    df.columns = list(map('_'.join, df.columns.values))

    # should not be part of data collection
    # df["Generalization_Gap"] = df["Loss_mean_Dev"] - df["Loss_mean_Train"]

    df = df.reset_index()

    return df
# @torch.compile(mode="reduce-overhead")
def train_batch(model, optimizer, loss, x, y, train_dl_len, batch_idx, device, accum_iter=1, k_frac=None):
    x = x.half()
    y = y.half()
    # x = x
    # y = y

    model.train()
    # with torch.set_grad_enabled(True): # turn on history tracking
    # forward pass
    proba = model(x)
    loss_array = loss(proba, y)

    loss_scalar = loss_array.mean()

    # backward pass
    optimizer.zero_grad(set_to_none=True) # clear accumulated gradients from backpropagation
    loss_scalar.backward()

    # weights update
    # if accum_iter != 1 -> gradient accumulation
    batch_num = batch_idx + 1

    if (
        (batch_num % accum_iter == 0)
        or
        (batch_num == len(train_dl_len))
    ):
        optimizer.step()

# @torch.compile(mode="reduce-overhead")
def train_epoch(dl, model, optimizer, loss, train_dl_len, device, eval=False, k_frac=None):

    # epoch_accuracies = []
    epoch_losses = []
    epoch_accuracies = []

    for batch_idx, (x, y) in enumerate(dl):
        train_batch(model, optimizer, loss, x, y, train_dl_len, batch_idx, device, accum_iter=1, k_frac=k_frac)

        # epoch_accuracies += eval_batch(model, x, y)
        if eval:
            temp = eval_batch(model, x, y, loss, device)
            epoch_losses += temp[0]
            epoch_accuracies += temp[1]

    return epoch_losses, epoch_accuracies

# @torch.compile(mode="reduce-overhead")
def eval_batch(model, x, y, loss, device):
    x = x.half()
    y = y.half()

    # x = x
    # y = y

    model.eval()
    with torch.inference_mode(): # turn off history tracking
        # forward pass
        proba = model(x)

        loss_value = loss(proba, y)
        epoch_loss_array = loss_value.detach() # loss_value.item() # batch loss

        true = model.predict_from_proba(y)
        pred = model.predict_from_proba(proba)
        epoch_accuracy_array = (pred == true) # torch.sum()

        return epoch_loss_array, epoch_accuracy_array

# @torch.compile(mode="reduce-overhead")
def eval_epoch(dl, model, loss, device):
    epoch_accuracies = []
    epoch_losses = []
    for batch_idx, (x, y) in enumerate(dl):
        temp = eval_batch(model, x, y, loss, device)
        epoch_losses += temp[0]
        epoch_accuracies += temp[1]

    return epoch_losses, epoch_accuracies


def train_model(train_dl, dev_dl, model, loss, optimizer, n_epochs, device, train_eval_every=10, dev_eval_every=10, agg=None, k_frac=None, log=False):
    print(rf"""
    \n
    Training with {train_dl, dev_dl, model, loss, optimizer, n_epochs, device, train_eval_every, dev_eval_every, agg, k_frac, log}
    """)

    model = model.to(device).half()

    model.train()

    summary_list = []

    train_dl_len = len(train_dl)

    print_epoch_every = dev_eval_every

    train_time = 0
    for epoch in range(1, n_epochs + 1):
        print_epoch = False
        eval_train = False
        eval_dev = False

        if epoch == 1 or epoch == n_epochs:
            eval_train = True
            eval_dev = True
            if log:
                print_epoch = True
        if epoch % train_eval_every == 0:
            eval_train = True
        if epoch % dev_eval_every == 0:
            eval_dev = True
        if epoch % print_epoch_every == 0:
            print_epoch = True

        if print_epoch:
            print(f"Epoch {epoch}/{n_epochs} started", end="")

        start_time = time.time()
        epoch_train_losses, epoch_train_accuracies = train_epoch(train_dl, model, optimizer, loss, train_dl_len, device, eval=eval_train, k_frac=k_frac)
        end_time = time.time()
        duration = end_time-start_time
        train_time += duration

        if eval_dev:
            epoch_dev_losses, epoch_dev_accuracies = eval_epoch(dev_dl, model, loss, device)
        else:
            epoch_dev_losses, epoch_dev_accuracies = [], []

        for e, a in zip(epoch_train_losses, epoch_train_accuracies):
            summary_list.append(
                [epoch, train_time,  "Train", float(e), float(a)]
            )
        for e, a in zip(epoch_dev_losses, epoch_dev_accuracies):
            summary_list.append(
                [epoch, train_time, "Dev", float(e), float(a)]
            )

        if print_epoch:
            print(f", completed")

    model.eval()

    summary = (
         pd.DataFrame(
            columns = ["Epoch", "Train_Time", "Subset", "Loss", "Accuracy"],
            data = summary_list
        )
    )

    if agg is not None:
        summary = summary.pipe(get_summary_agg, agg)

    return summary

Idea

I was watching https://youtu.be/VMj-3S1tku0 and got an idea. I’ve put the same here: https://github.com/karpathy/micrograd/issues/78

Context

This is in reference to the step of clearing accumulated gradients at: https://github.com/karpathy/micrograd/blob/c911406e5ace8742e5841a7e0df113ecb5d54685/demo.ipynb#L265

Problem

People tend to forget to clear the gradients wrt the loss function backward pass.

Idea

Create a way to bind the loss function to the network once, and then automatically clear accumulated gradients automatically when performing the backward pass.

Advantage

We can perform backward pass whenever, wherever, and as many times as we want without worrying about accumulated gradient.

Pseudocode

class Loss(Value):
  def __init__(self, bound_network):
    self.bound_network = bound_network

  def __call__(self, batch_size=None):
    # loss function definition
    self.data = data_loss + reg_loss

  def backward():
    # clear gradients of bound network
    bound_network.zero_grad()
    super().backward()    

total_loss = Loss(
  bound_network = model
)

for k in range(100):
  # ...

  # model.zero_grad() # since total_loss is bound to network, it should automatically perform model.zero_grad() before doing the backward
  total_loss.backward()

  # ...

Questions

  1. Is my understanding of the problem correct?
  2. Is this change value-adding?
  3. Is the above pseudocode logically correct?
  4. If the answer to all the above are yes, I could work on a PR with your guidance.

Loss Curve

def plot_summary(df, x, y):
    df = df.copy()
    c = "Optimizer"

    if "Accuracy" in y and "Generalization" not in y:
        sub_title = f"Higher is better"
        percentage = True
    else:
        sub_title = f"Lower is better"
        percentage = False

    if percentage:
        df[y] *= 100

    if "Accuracy" in y and "Generalization" not in y:
        range_y = [
            0,
            100
        ]
    else:
        range_y = [
            0,
            df[
                df[y] > 0
            ][y].quantile(0.90)*1.1
        ]

    # if "loss" in y.lower():
    #   range_y = [0, df[y].quantile(0.90)*1.1]
    # else:
    #   range_y = None
    # if y == "Generalization_Gap":
    #   sub_title = f"Lower is better"
    #   range_y = None
    # else:
    #   range_y = [0, 100 if percentage else 1]
    #   sub_title = f"Higher is better"

    title = f'{y.replace("_", " ")}'

    title += f"<br><sup>{sub_title}</sup>"

    facet_row = "Train_Batch_Size"

    fig = px.line(
        data_frame=df,
        x=x,
        y=y,
        facet_col="Learning_Rate",
        facet_row="Train_Batch_Size",
        facet_row_spacing = 0.1,
        color = c,
        title = title,
        range_x = [df[x].values.min(), df[x].values.max()],
        range_y = range_y, # df[y].values.min() * 0.95
        markers=True,
    )

    n_rows = df[facet_row].unique().shape[0]
    fig.update_layout(height=300*n_rows)
    fig.update_traces(
        patch={
            "marker": {"size": 5},
            "line": {
                "width": 1,
                # "dash": "dot"
            },
        }
    )
    fig.update_traces(connectgaps=True) # required for connecting dev accuracies
    st.plotly_chart(fig, use_container_width=True)

    return fig

Multiple Models

import inspect

def train_models(loss, model, n_epochs, optimizer_names, learning_rates, train_batch_sizes, device, agg=["mean"], train_eval_every=10, dev_eval_every=10, log=False, output_path = "summary.csv"):
    # summaries = pd.DataFrame()
    # i=0
    train_size = min(2_048, len(train)) # Check if model overfits on small data, to ensure DNN actually is effective
    dev_size = min(2_048, len(dev))
    train_random_sampler = RandomSampler(train, num_samples=train_size)
    dev_random_sampler = RandomSampler(dev, num_samples=dev_size)

    evaluation_batch_size = 2_048

    if evaluation_batch_size > dev_size:
        raise Exception("Evaluation batch size > dev size")

    for train_batch_size in train_batch_sizes:
        if evaluation_batch_size > train_size:
            raise Exception("Evaluation batch size > dev size")

        train_dl = DataLoader(
            train, sampler=train_random_sampler, batch_size=train_batch_size, drop_last=True,
            # num_workers = 1 # 0
        )

        dev_dl = DataLoader(
            dev, sampler=dev_random_sampler, batch_size=evaluation_batch_size, drop_last=True,
            # num_workers = 1 # 0
        )

        for learning_rate in learning_rates:
            if learning_rate > 0.0100:
                raise Exception("Very high learning rate")
            for optimizer_name in optimizer_names:
                model_copy = copy.deepcopy(model)
                optimizer = getattr(optim_class, optimizer_name)
                optimizer_kwargs = dict(
                    params = model_copy.parameters(),
                    lr=learning_rate
                )
                if "eps" in list(inspect.getfullargspec(optimizer.__init__)[0]):
                    optimizer_kwargs.update(eps=1e-4)
                optimizer = optimizer(**optimizer_kwargs)

                for state in optimizer.state.values():
                    for k, v in state.items():
                        if isinstance(v, torch.Tensor):
                            state[k] = torch.as_tensor(v, device=device).half()

                summary = train_model(
                    train_dl,
                    dev_dl,
                    model_copy,
                    loss,
                    optimizer,
                    n_epochs,
                    device = device,
                    train_eval_every=train_eval_every,
                    dev_eval_every=dev_eval_every,
                    log=log,
                    agg = agg
                )
                summary["Model"] = str(get_all_nodes(model_copy))
                summary["Optimizer"] = optimizer_name
                summary["Learning_Rate"] = learning_rate
                summary["Train_Batch_Size"] = train_batch_size

                # disabled due too high space complexity
                # summaries = pd.concat([
                #   summaries,
                #   summary
                # ])
                summary.to_csv(
                    output_path,
                    index = False,
                    mode = "a",
                    header = not os.path.exists(output_path)
                )
                gc.collect(0)

                # i += 1
                # if i==1:
                #   break

    return None
model = NeuralNet(
    init_data = train,
    hidden_layers = [
        nn.Flatten(),
        nn.LazyLinear(10),
        nn.ReLU(),
        # nn.LazyLinear(10),
        # nn.ReLU()
        # nn.Sigmoid() # not required
    ]
)
def percentile(p):
    def percentile_(x):
        return np.percentile(x, p)
    percentile_.__name__ = f'Percentile_{p}'#.format(n*100)
    return percentile_
optimizer_names = [
    # 'ASGD',
    # 'Adadelta',
    # 'Adagrad',
    'Adam',
    # 'AdamW',
    # 'Adamax',
    # # 'LBFGS',
    # 'NAdam',
    # 'RAdam',
    # 'RMSprop',
    # 'Rprop',
    'SGD',
    # 'SparseAdam'
]
gc.collect()
gc.set_threshold(0)
summaries = train_models(
  loss = nn.CrossEntropyLoss(reduction="none"),
    model = model,
    n_epochs = 20, # 3
    optimizer_names = optimizer_names,
    learning_rates = [
      1e-4, 1e-3, 1e-2
    ],
    train_batch_sizes = [
        16, 32, 64
    ],
    device = device,
    agg = [
        "mean",
        # "std",
        # "median",
        percentile(2.5),
        percentile(97.5)
    ],
    train_eval_every=3,
    dev_eval_every=3,
    log = True
)
gc.collect()
gc.set_threshold(g0, g1, g2)
Last Updated: 2024-12-26 ; Contributors: AhmedThahir, web-flow

Comments