01
Optimization¶
def func(x, m, c):
return m*x + c
def jacobian(x, m, c):
return ## first derivative
def hessian(x, m, c):
return ## second derivative
constraints = (
## equality constraint
## fun = 0
dict(
type = 'eq', ## = 0
fun = lambda x: x.sum() - 1.0,
jac = lambda x: np.ones_like(x) ## optional, but recommended
),
## inequality constraint
## fun >= 0
dict(
type = 'ineq', ## = 0
fun = lambda x: x.sum() + 1.0,
jac = lambda x: np.ones_like(x) ## optional, but recommended
),
)
bounds = (
(0, None),
(0, None)
)
res = minimize(
func=func,
x0 = [0, 0], ## initial_guess
method = 'SLSQP',
jac = jacobian,
## hes = hessian,
bounds = bounds,
constraints = constraints
)
Interpolation¶
from scipy.interpolate import interp1d
f = interp1d(
x,
y,
kind="linear" ## "cubic"
)
interpolated_values = f(x_dash)
Curve Fitting¶
from scipy.optimize import curve_fit
def func(x, a, b):
return (a * x**2) + b
popt, pcov = curve_fit(
func,
x_data,
y_data,
p0 = (1, 1)
)
PCov¶
pcov = (
np.sqrt(self.optimization.fun) * np.sqrt(np.diag(
self
.optimization
.hess_inv
.todense()
))
)
Custom Curve Fit with Regularization¶
Custom Solvers¶
Solver¶
The below implementations always return success=True
Shouldn't we check it is actually successful?
BGD¶
def bgd(
fun,
x0,
jac,
args=(),
learning_rate=0.001,
mass=0.9,
startiter=0,
maxiter=1000,
callback=None,
**kwargs
):
"""``scipy.optimize.minimize`` compatible implementation of batch
gradient descent with momentum.
Adapted from ``autograd/misc/optimizers.py``.
"""
x = x0
velocity = np.zeros_like(x)
for i in range(startiter, startiter + maxiter):
g = jac(x)
if callback and callback(x):
break
velocity = mass * velocity - (1.0 - mass) * g
x = x + learning_rate * velocity
i += 1
return OptimizeResult(x=x, fun=fun(x), jac=g, nit=i, nfev=i, success=True)
RMSProp¶
def rmsprop(
fun,
x0,
jac,
args=(),
learning_rate=0.1,
gamma=0.9,
eps=1e-8,
startiter=0,
maxiter=1000,
callback=None,
**kwargs
):
"""``scipy.optimize.minimize`` compatible implementation of root mean
squared prop: See Adagrad paper for details.
Adapted from ``autograd/misc/optimizers.py``.
"""
x = x0
avg_sq_grad = np.ones_like(x)
for i in range(startiter, startiter + maxiter):
g = jac(x)
if callback and callback(x):
break
avg_sq_grad = avg_sq_grad * gamma + g**2 * (1 - gamma)
x = x - learning_rate * g / (np.sqrt(avg_sq_grad) + eps)
i += 1
return OptimizeResult(x=x, fun=fun(x), jac=g, nit=i, nfev=i, success=True)
Adam¶
def adam(
fun,
x0,
jac,
args=(),
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
eps=1e-8,
startiter=0,
maxiter=1000,
callback=None,
**kwargs
):
"""``scipy.optimize.minimize`` compatible implementation of ADAM -
[http://arxiv.org/pdf/1412.6980.pdf].
Adapted from ``autograd/misc/optimizers.py``.
"""
x = x0
m = np.zeros_like(x)
v = np.zeros_like(x)
for i in range(startiter, startiter + maxiter):
g = jac(x)
if callback and callback(x):
break
m = (1 - beta1) * g + beta1 * m ## first moment estimate.
v = (1 - beta2) * (g**2) + beta2 * v ## second moment estimate.
mhat = m / (1 - beta1**(i + 1)) ## bias correction.
vhat = v / (1 - beta2**(i + 1))
x = x - learning_rate * mhat / (np.sqrt(vhat) + eps)
i += 1
return OptimizeResult(x=x, fun=fun(x), jac=g, nit=i, nfev=i, success=True)
Usage¶
from scipy.optimize import minimize
res = minimize(..., method = func) ## func = sgd, rmsprop, or adam
print(res.x)
Calculus¶
Differentiation
Analytical
def pd(func, var=0, point=[]):
## partial derivative
args = point[:]
def wraps(x):
args[var] = x
return func(*args)
return derivative(wraps, point[var], dx = 1e-6)
pd(foo, 0, [3,1]) ## 6.0000000008386678
pd(foo, 1, [3,1]) ## 2.9999999995311555
Integration
from scipy.integrate import quad
def func(x):
return x**2
integral, integral_error = quad(func, 0, 1)
from scipy.integrate import dbquad
def func(x):
return x**2 + y**2
integral, integral_error = dblquad(func, 0, 1, 0, 1)
Differential Equations
from scipy.integrate import odeint
def dvdt(v, t):
return 3 * v**2 - 5
v0 = 0
t = np.linspace(0, 1, 100)
sol = odeint(dvdt, v0, t)
## coupled
def dSdx(S, x):
y1, y2 = S
return [
y1 + y2**2 + 3*x,
3*y1 + y2**3 - np.cos(x)
]
y1_0 = 0
y2_0 = 0
S_0 = (y1_0, y2_0)
x = np.linspace(0, 1, 100)
sol = odeint(dSdx, S_0, x)
y1 = sol.T[0]
y2 = sol.T[1]
Fourier Transforms¶
Numeric¶
Continuous Time & Frequency¶
from scipy.integrate import quad
def x(t, k):
return np.exp(-k * t**2) * np.sin(k*t) * t**4
def get_x_ft(x, f, k):
x_FT_integrand_real = lambda t: np.real(x(t, k) * np.exp( -2*np.pi*1j*f*t) )
x_FT_integrand_complex = lambda t: np.imag(x(t, k) * np.exp( -2*np.pi*1j*f*t) )
x_FT_real = quad(x_FT_integrand_real, -np.inf, np.inf)[0]
x_FT_comp = quad(x_FT_integrand_comp, -np.inf, np.inf)[0]
return x_FT_real + 1j*x_FT_comp
Continuous Time & Discrete Frequency¶
from scipy.integrate import quad
def x(t, k):
return np.exp(-k * t**2) * np.sin(k*t) /t
def get_x_ft(x, f, k, T):
x_FT_integrand_real = lambda t: np.real(x(t, k) * np.exp( -2*np.pi*1j*(n/T)*t) )
x_FT_integrand_complex = lambda t: np.imag(x(t, k) * np.exp( -2*np.pi*1j*(n/T)*t) )
x_FT_real = quad(x_FT_integrand_real, 0, T)[0]
x_FT_comp = quad(x_FT_integrand_comp, 0, T)[0]
return x_FT_real + 1j*x_FT_comp
FFT¶
Discrete Time & Frequency
# 2D
from scipy.fft import fft2, fftfreq2
img_FT =_fft2(img)
fy = fftfreq(img.shape[0], d=10) # suppose the spacing between pixels is 10mm
fx = fftfreq(img.shape[1], d=10)
Linear Algebra¶
Not very applicable to me
Stats¶
dist.pmf() ## probability mass function
dist.cdf() ## cumulative dist function
dist.ppf() ## inverse of cdf
dist.rvs() ## generate random variable sample
Proportion¶
p = 0.2 # probability of failure
n = 1_000
alpha = 0.95
sig = (1-alpha)/2
# method 1: Slow but exact
k = int(p*n) # no of failures proportional to p and n
low, high = stats.binomtest(k, n, p).proportion_ci(confidence_level=alpha, method="exact")
# method 2: Fast but approximate
dist = stats.binom(n, p)
low, high = dist.ppf(sig)/n, dist.ppf(1-sig)/n
beta
from scipy.stats import beta
a, b = 2.5, 3.1
mean, var, skew, kurt = beta.stats(a, b, moments="mvsk")
normal
skewnorm
from scipy.stats import skewnorm
## skewness_factor
a = 5 ## +ve skew
a = -5 ## -ve skew
mean, var, skew, kurt = skewnorm.stats(a, moments='mvsk')
generated_values = skewnorm.rvs(a, size=1000)
custom
import scipy.stats as st
class my_dist(st.rv_continuous):
def _pdf(self, x, a1, a2, b1, b2):
return np.sin(x)
## def _cdf(self, )
## def _rvs(self, )
my_rv = my_dist(a = 0, b=np.inf)
Jac¶
Need not be the final