Introduction
# define model
regressor = RandomForestRegressor()
# transform to tabular form
features_no_of_lags = 3 # {1, 2, 3}
forecaster = make_reduction(
regressor,
window_length = features_no_of_lags,
strategy = "recursive"
)
forecast_horizon = np.arange(1, 5)
cv_expanding = ExpandingWindowSplitter(
initial_window = 24*10,
step_length = 24,
fh = forecast_horizon,
)
cv_expanding = SlidingWindowSplitter(
window_length = 24*10,
step_length = 24,
fh = forecast_horizon,
)
results = evaluate(
forecaster = forecaster,
y = y_train,
cv = cv,
return_data = True,
strategy = "refit" # ["refit", "update"]
)