01
Importing¶
import plotly.express as px
import plotly.graph_objs as go
import plotly.io as pio
pio.templates.default = "ggplot2"
pio.renderers.default = "notebook"
## injects plotly.js into the notebook for offline plotly
## but only works for the first save, for some reason
Plots¶
Maps¶
fig = px.scatter_geo(
df,
lat = "Lat",
lon = "Lon",
color = "Name"
).update_traces(
marker = dict(size = 10),
).update_layout(
margin = dict(t=0, l=0, r=0, b=0)
).update_geos(
projection_type="orthographic",
center=dict(lat=17, lon=65.5),
projection_rotation=dict(lon=65, lat=10),
showcountries=True,
countrycolor="rgba(0,0,0, 0.1)"
)
fig.show()
Sankey Chart¶
import plotly.graph_objects as go
fig = go.Figure(data=[go.Sankey(
node = dict(
pad = 15,
thickness = 20,
line = dict(color = "black", width = 0.5),
label = my_sankey['label'],
color = "blue"
),
link = dict(
source = my_sankey['source'],
target = my_sankey['target'],
value = my_sankey['value']
))])
fig.write_html('test.html')
Useful Configuration¶
Only 2 series as colored
Useful when there are a lot of colors
df["order"] = (
df["Country Name"]
.map({"Japan": 1, "Turkey": 2})
.fillna(3)
)
## sort by this order
df.sort_values(by=["order","years"], ascending=False, inplace=True)
## The line which comes the latest, is drawn on the top.
fig.update_traces({"line":{"color":"lightgrey"}})
fig.update_traces(patch={"line":{"color":"blue", "width":5}},
selector={"legendgroup":"Turkey"})
fig.update_traces(patch={"line":{"color":"red", "width":5}},
selector={"legendgroup":"Japan"})
Adding text at the end of line, instead of legends¶
for i, d in enumerate(fig.data):
text = ' ' + d.name + ' ' ## str(d.y[-1])
## last non-empty
last_index = pd.Series(d.y).last_valid_index()
## last_index = len([x for x in d.y if x != "nan"])-1 ## for string/object col
fig.add_scatter(
x = [d.x[last_index]],
y = [d.y[last_index]], ## last non-empty
hoverinfo = 'skip',
hovertemplate = 'skip',
mode = 'text',
text = text,
textfont = dict(color = d.line.color),
textposition = 'top left',
showlegend = False
)
## first non-empty
first_index = pd.Series(d.y).first_valid_index()
## idk ## for string/object col
fig.add_scatter(
x = [d.x[first]],
y = [d.y[first]], ## last non-empty
hoverinfo = 'skip',
hovertemplate = 'skip',
mode = 'text',
text = text,
textfont = dict(color = d.line.color),
textposition = 'top right',
showlegend = False
)
update_layout()
¶
fig = go.Figure().update_layout(
## Title and Subtitle
title = dict(
text = "<span style='font-size:1.5em'>" +
"Title"
+ "</span><br /><sup>" +
"Subtitle"
+ "</sup>",
x = 0, xref = "paper",
#y = 0.95, yref = "paper",
),
uirevision="foo", overwrite=True, ## ensures clicks are retained on refresh
plot_bgcolor = "rgba(0, 0%, 0%, 0)",
paper_bgcolor = "rgba(0, 0%, 0%, 0)",
margin=dict(t=0, r=0, b=0, l=0),
## axes titles
xaxis_title = "x_title",
yaxis_title = "y_title",
hovermode = "x unified",
## legend
showlegend = False,
legend = dict(
groupclick="toggleitem",
orientation = 'h',
## positioning
x = 0,
xanchor = "left",
y = 1,
yanchor = "bottom",
font = dict(
size = 10
),
itemsizing = 'constant',
## click behavior
#itemclick = 'toggleothers',
#itemdoubleclick = 'toggle'
)
)
custom menu¶
The updatemenu method determines which plotly.js function will be used to modify the chart. There are 4 possible methods:
"restyle"
: modify data or Data attributes
"relayout"
: modify layout attributes
"update"
: modify data and layout attributes; combination of "restyle"
and "relayout"
"animate"
: start or pause an animation)
Examples
restyle
fig = go.Figure()
## Add surface trace
fig.add_trace(go.Surface(z=df.values.tolist(), colorscale="Viridis"))
## Update plot sizing
fig.update_layout(
width=800,
height=900,
autosize=False,
margin=dict(t=0, b=0, l=0, r=0),
template="plotly_white",
)
## Update 3D scene options
fig.update_scenes(
aspectratio=dict(x=1, y=1, z=0.7),
aspectmode="manual"
)
## Add dropdown
fig.update_layout(
updatemenus=[
dict(
type = "buttons",
direction = "left",
buttons=list([
dict(
args=["type", "surface"],
label="3D Surface",
method="restyle"
),
dict(
args=["type", "heatmap"],
label="Heatmap",
method="restyle"
)
]),
pad={"r": 10, "t": 10},
showactive=True,
x=0.11,
xanchor="left",
y=1.1,
yanchor="top"
),
]
)
relayout
import plotly.graph_objects as go
## Generate dataset
import numpy as np
np.random.seed(1)
x0 = np.random.normal(2, 0.4, 400)
y0 = np.random.normal(2, 0.4, 400)
x1 = np.random.normal(3, 0.6, 600)
y1 = np.random.normal(6, 0.4, 400)
x2 = np.random.normal(4, 0.2, 200)
y2 = np.random.normal(4, 0.4, 200)
## Create figure
fig = go.Figure()
## Add traces
fig.add_trace(
go.Scatter(
x=x0,
y=y0,
mode="markers",
marker=dict(color="DarkOrange")
)
)
fig.add_trace(
go.Scatter(
x=x1,
y=y1,
mode="markers",
marker=dict(color="Crimson")
)
)
fig.add_trace(
go.Scatter(
x=x2,
y=y2,
mode="markers",
marker=dict(color="RebeccaPurple")
)
)
## Add buttons that add shapes
cluster0 = [dict(type="circle",
xref="x", yref="y",
x0=min(x0), y0=min(y0),
x1=max(x0), y1=max(y0),
line=dict(color="DarkOrange"))]
cluster1 = [dict(type="circle",
xref="x", yref="y",
x0=min(x1), y0=min(y1),
x1=max(x1), y1=max(y1),
line=dict(color="Crimson"))]
cluster2 = [dict(type="circle",
xref="x", yref="y",
x0=min(x2), y0=min(y2),
x1=max(x2), y1=max(y2),
line=dict(color="RebeccaPurple"))]
fig.update_layout(
updatemenus=[
dict(
type="buttons",
buttons=[
dict(label="None",
method="relayout",
args=["shapes", []]),
dict(label="Cluster 0",
method="relayout",
args=["shapes", cluster0]),
dict(label="Cluster 1",
method="relayout",
args=["shapes", cluster1]),
dict(label="Cluster 2",
method="relayout",
args=["shapes", cluster2]),
dict(label="All",
method="relayout",
args=["shapes", cluster0 + cluster1 + cluster2])
],
)
]
)
## Update remaining layout properties
fig.update_layout(
title_text="Highlight Clusters",
showlegend=False,
)
fig.show()
update_xaxes()
¶
fig.update_xaxes(autorange = 'reversed')
fig.update_xaxes(range = [100, -30])
## only the first month has the year
fig.update_xaxes(
type = "date",
dtick="M1",
tickformat="%b\n%Y"
)
config
¶
export_width = 1000
export_height = export_width/2
config = dict(
doubleClickDelay = 400, ## (ms) affects the single click delay; default = 300ms
## displayModeBar = True,
displaylogo = False,
modeBarButtonsToRemove = ["zoom", "select2d", "lasso2d", "pan", "zoomIn", "zoomOut", "autoScale", "resetScale"],
## scrollZoom = True,
showTips = False,
toImageButtonOptions = dict(
format = 'pdf', ## pdf, svg, png, jpeg, webp
filename = title,
width = export_width,
height = export_height,
scale = 1 ## Multiply title/legend/axis/canvas sizes by this factor
)
)
Grey out areas not selected by marquee select¶
scatter = px.scatter_matrix(df)
scatter.data[0].update(selected=dict(marker=dict(color='red')),
unselected=dict(marker=dict(color='blue',
opacity=0.001)))
Animated¶
Autoplay¶
Save as GIF¶
Using moviepy
import numpy as np
from scipy.spatial import Delaunay
import plotly.graph_objects as go
import moviepy.editor as mpy
import io
from PIL import Image
def plotly_fig2array(fig):
#convert Plotly fig to an array
fig_bytes = fig.to_image(format="png")
buf = io.BytesIO(fig_bytes)
img = Image.open(buf)
return np.asarray(img)
n = 20 ## number of radii
h = 2/(n-1)
r = np.linspace(h, 2, n)
theta = np.linspace(0, 2*np.pi, 60)
r, theta = np.meshgrid(r,theta)
r = r.flatten()
theta = theta.flatten()
x = r*np.cos(theta)
y = r*np.sin(theta)
## Triangulate the circular planar region
tri = Delaunay(np.vstack([x,y]).T)
faces = np.asarray(tri.simplices)
I, J, K = faces.T
f = lambda h: np.sinc(x**2+y**2)+np.sin(x+h)
fig = go.Figure(go.Mesh3d(x=x,
y=y,
z=f(0),
intensity=f(0),
i=I,
j=J,
k=K,
colorscale='matter_r',
showscale=False))
fig.update_layout(title_text='My hat is flying with MoviePy',
title_x=0.5,
width=500, height=500,
scene_xaxis_visible=False,
scene_yaxis_visible=False,
scene_zaxis_visible=False)
## No Plotly frames are defined here!! Instead we define moviepy frames by
## converting each Plotly figure to an array, from which MoviePy creates a clip
## The concatenated clips are saved as a gif file:
def make_frame(t):
z = f(2*np.pi*t/2)
fig.update_traces(z=z, intensity=z) #These are the updates that usually are performed within Plotly go.Frame definition
return plotly_fig2array(fig)
animation = mpy.VideoClip(make_frame, duration=2) ## or VideoFileClip
animation.write_gif("image/my_hat.gif", fps=20)
animation.write_videofile("gfg_intro.webm")
Manual
import plotly.express as px
import pandas as pd
import numpy as np
import io
import PIL
## sample data
df = pd.DataFrame(
{
"step": [1, 2, 3],
"x": [10, 20, 30],
"y": [100, 200, 300],
}
)
## smaple plotly animated figure
fig = px.bar(df, x="x", y="y", animation_frame="step")
## generate images for each step in animation
frames = []
for s, fr in enumerate(fig.frames):
## set main traces to appropriate traces within plotly frame
fig.update(data=fr.data)
## move slider to correct place
fig.layout.sliders[0].update(active=s)
## generate image of current state
frames.append(PIL.Image.open(io.BytesIO(fig.to_image(format="png"))))
## create animated GIF
frames[0].save(
"test.gif",
save_all=True,
append_images=frames[1:],
optimize=True,
duration=500,
loop=0,
)
Scatter Plot (Hans Rosling Style)¶
fig = px.scatter(data_frame = df,
x = 'consumption_co2',
y = 'consumption_co2_per_capita',
size = 'population',
hover_name = 'country',
color = 'country',
animation_frame = 'year',
animation_group = 'country',
size_max=60,
log_x=True,
range_x = [0, 1.05 * np.log10(df["consumption_co2"].max())],
range_y = [0, 1.05 * df["consumption_co2"].max()]
)
Choropleth¶
px.choropleth(gapminder,
locations="iso_alpha",
color="lifeExp",
hover_name="country",
animation_frame="year",
color_continuous_scale='Plasma',
height=600
)
Line Chart¶
data = pd.read_csv(r"https://raw.githubusercontent.com/datageekrj/ForHostingFiles/master/income_per_person_gdppercapita_ppp_inflation_adjusted.csv")
numOfRows = data.shape[0] ## No of Countries
numOfCols = data.shape[1] ## No of years + one column for a country
numOfFrames = numOfCols - 1
xaxis_range = [0,numOfFrames + 2]
## While, testing the code, test with low numbers:
## Initial State of the data
## First we are just seeing it for afghanistan
x_init = np.array([1])
initial_data = []
for cont_ind in [75,35,184,83,140]:
y_axis = np.array(data.iloc[cont_ind,0])
initial_data.append(go.Scatter(x =x_init, y = y_axis,mode = "lines",name = data.country[cont_ind]))
initial_max = 600
## Frames
frames = []
for f in range(1,numOfFrames+1):
x_axis = np.arange(1,f+1)
curr_data = []
title_names = []
start = "For " + str(1800 + f + 1)
for cont_ind in [75,35,184,83,140]:
curr_country = data.country[cont_ind]
y_axis = np.array(data.iloc[cont_ind,1:f+1])
curr_data.append(go.Scatter(x = x_axis, y = y_axis,mode = "lines", name = curr_country))
title_names.append(curr_country + ": " + str(y_axis[f-1]/1000) + "K Dollar. ")
title = start + " " + " ".join(title_names)
curr_frame = go.Frame(data = curr_data, layout = {"title":title})
frames.append(curr_frame)
fig = go.Figure(
data = initial_data,
layout = {
"title":"Line Chart Race",
"xaxis":{"range":xaxis_range, "visible":False, "showline":False},
"yaxis":{"type":"log", "visible":False, "showline":False},
"updatemenus":[{"type":"buttons","buttons":[{"method":"animate","label":"play", "args":[None]}]}]
},
frames = frames
)
fig.show()
Performance¶
Webgl renderer¶
px.scatter(df, x="x", y="y", render_mode='webgl')
px.scatter_polar(df, x="x", y="y", render_mode='webgl')
px.line(df, x="x", y="y", render_mode='webgl')
px.line_polar(df, x="x", y="y", render_mode='webgl')
go.Scattergl()
go.Scatterpolargl()
go.Heatmapgl()
Specify axis range¶
Letting plotly autorange means it needs to do relayouts often and requires it to calculate the range each time.
Use heatmap instead of pairplot¶
import numpy as np
N = 1000
M = 500
xx = np.arange(N, dtype=np.float64)
yy = np.arange(M, dtype=np.float64)
x, y = np.meshgrid(xx, yy)
b = N/20.0
c = M/2.0
r = np.sqrt(((x-c)/b)**2 + ((y-c)/b)**2)
a = np.sin(r)
## Limits
xmin = xx[0]
xmax = xx[-1]
ymin = yy[0]
ymax = yy[-1]
amin = np.amin(a)
amax = np.amax(a)
from PIL import Image
from matplotlib import cm
from matplotlib.colors import Normalize
## Some normalization from matplotlib
cNorm = Normalize(vmin=amin, vmax=amax)
scalarMap = cm.ScalarMappable(norm=cNorm, cmap='viridis' )
seg_colors = scalarMap.to_rgba(a)
img = Image.fromarray(np.uint8(seg_colors*255))
## Now the plotly code
import plotly.graph_objects as go
## Create figure
fig = go.Figure()
## Constants
img_width = 900
img_height = 600
## Add invisible scatter trace.
## This trace is added to help the autoresize logic work.
## We also add a color to the scatter points so we can have a colorbar next to our image
fig.add_trace(
go.Scatter(
x=[xmin, xmax],
y=[ymin, ymax],
mode="markers",
marker={"color":[np.amin(a), np.amax(a)],
"colorscale":'Viridis',
"showscale":True,
"colorbar":{"title":"Counts",
"titleside": "right"},
"opacity": 0
}
)
)
## Add image
fig.update_layout(
images=[go.layout.Image(
x=xmin,
sizex=xmax-xmin,
y=ymax,
sizey=ymax-ymin,
xref="x",
yref="y",
opacity=1.0,
layer="below",
sizing="stretch",
source=img)]
)
## Configure other layout
fig.update_layout(
xaxis=dict(showgrid=False, zeroline=False, range=[xmin, xmax]),
yaxis=dict(showgrid=False, zeroline=False, range=[ymin, ymax]),
width=img_width,
height=img_height,
)
fig.show()
Use summary statistics whenever possible
Plotly Resampler¶
Datashader¶
use Plotly.react instead of Plotly.newPlot (only for plotly.js)¶
Tutorials¶
https://www.youtube.com/watch?v=hSPmj7mK6ng
https://www.youtube.com/watch?v=pGMvvq7R1IM
https://www.youtube.com/watch?v=8d7rArayuzc
https://www.youtube.com/watch?v=_b2KXL0wHQg
Exporting¶
Static¶
fig.write_image(f"{title}.pdf")
fig.write_image(f"{title}.svg")
fig.write_image(f"{title}.png")
fig.write_image(f"{title}.jpg")
fig.write_image(f"{title}.webp")
Interactive¶
Embed within¶
fig.write_html("graph_name.html",
full_html=False,
include_plotlyjs = True,
config = dict(
doubleClickDelay = 400, ## (ms) affects the single click delay; default = 300ms
displayModeBar = False,
showTips = False
)
)
Export a js file to the same directory¶
fig.write_html("graph_name.html",
full_html=False,
include_plotlyjs = "directory_path",
config = dict(
doubleClickDelay = 400, ## (ms) affects the single click delay; default = 300ms
displayModeBar = False,
showTips = False
)
)
Use external source (useful for revealjs)¶
fig.write_html(
"graph_name.html", ## no need to add _plotly to the file name, because the iframe will request
full_html=False,
include_plotlyjs = "../../../backend/plugins/plotly/plotly-basic.min.js", ## 3 backtracks because it is an iframe in the assets folder, so it has to an extra backtrack
include_mathjax = "",
config = config
)
Interactive Hover¶
def hover_fn(trace, points, state):
ind = points.point_inds[0]
details.value = cars_df.iloc[ind].to_frame().to_html()
scatter.on_hover(hover_fn)
Multiple Traces from the same¶
for i in range(4): ## 0-3
subset = spf_unrate[
spf_unrate["PREDICTION_PERFORMED_LAG"] == i
]
fig.add_trace(go.Scattergl(
x = subset.index.astype(str),
y = subset["UNRATE"],
name = f"SPF (Forecast) with Lag = {i}"
))
Maps¶
Default
fig = px.scatter_geo(
df,
lat="Lat",
lon="Lon",
hover_name="Name",
projection="orthographic",
## center = (0, 0)
)
fig.update_geos(
## (meters) : higher number --> lower detail --> smoother
resolution=110,
bgcolor='hsla(0, 0%, 0%, 0)',
showcountries=True, countrycolor="Grey",
showcoastlines=True, coastlinecolor="Grey",
showland=True, landcolor="LightYellow",
showocean=True, oceancolor="LightBlue",
## showlakes=True, lakecolor="LightBlue",
## showrivers=True, rivercolor="LightBlue",
)
fig.update_layout(
margin=dict(r=0, t=0, l=0, b=0),
uirevision="foo",
overwrite=True,
paper_bgcolor='hsla(0, 0%, 0%, 0)',
plot_bgcolor='hsla(0, 0%, 0%, 0)',
modebar=dict(
bgcolor='hsla(0, 0%, 0%, 0.5)',
color='hsla(0, 0%, 100%, 0.5)',
)
)
Mapbox
## create a map of area, where houses from data set located
fig = px.scatter_mapbox(data, #our data set
lat="lat", lon="long", #location
color="price", #select a column for ranking
hover_name="price",
hover_data=["bedrooms", "bathrooms"],
color_discrete_sequence=["green"],
size_max=15,
zoom=8,
width=900, height=600, #map size
title = 'Map of area, check location')
#style of map
fig.update_layout(mapbox_style="open-street-map")
fig.show(config={'scrollZoom': False})
4D Surface¶
3 axes, color as output
x = [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7]
y = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
z = [0, 2, 3, 1, 0, 5, 6, 1, 0, 2, 3, 1, 0, 5, 6, 1]
f = x+y+z
fig = go.Figure(
go.Mesh3d(
x = x,
y = y,
z = z,
intensity = f,
showscale=True
)
)
fig
Ridge Plot¶
# the idea behind this ridgeline plot with Plotly is to add traces manually, each trace corresponding to a particular year's temperature distribution
# thus, we are to store each year's data (temperatures and their respective count) in seperate arrays or pd.series that we store in a dictionnary to retrieve them easily
array_dict = {} # instantiating an empty dictionnary
for year in year_list:
array_dict[f'x_{year}'] = temp[temp['year']==year]['Mean_TemperatureC'] # storing the temperature data for each year
array_dict[f'y_{year}'] = temp[temp['year']==year]['count'] # storing the temperature count for each year
array_dict[f'y_{year}'] = (array_dict[f'y_{year}'] - array_dict[f'y_{year}'].min()) \
/ (array_dict[f'y_{year}'].max() - array_dict[f'y_{year}'].min()) # we normalize the array (min max normalization)
# once all of this is done, we can create a plotly.graph_objects.Figure and add traces with fig.add_trace() method
# since we have stored the temperatures and their respective count for each year, we can plot scatterplots (go.Scatter)
# we thus iterate over year_list and create a 'blank line' that is placed at y = index, then the corresponding temperature count line
fig = go.Figure()
for index, year in enumerate(year_list):
fig.add_trace(go.Scatter(
x=[-20, 40], y=np.full(2, len(year_list)-index),
mode='lines',
line_color='white'))
fig.add_trace(go.Scatter(
x=array_dict[f'x_{year}'],
y=array_dict[f'y_{year}'] + (len(year_list)-index) + 0.4,
fill='tonexty',
name=f'{year}'))
# plotly.graph_objects' way of adding text to a figure
fig.add_annotation(
x=-20,
y=len(year_list)-index,
text=f'{year}',
showarrow=False,
yshift=10)
# here you can modify the figure and the legend titles
fig.update_layout(
title='Average temperature from 1950 until 2010 in Seattle',
showlegend=False,
xaxis=dict(title='Temperature in degree Celsius'),
yaxis=dict(showticklabels=False) # that way you hide the y axis ticks labels
)
fig.show()