Skip to content

12 Heap

Last Updated: 2 years ago2023-01-25 ; Contributors: AhmedThahir

Based on complete binary trees

Types

Type Property
Min-Heap vv \le descendants
Max-Heap vv \ge descendants

Implementation

Array

  1. Root = 0
  2. Left Child = 2i+12i+1

Consider a node with index ii

Node Value
Root of entire tree 0
Left Child 2i+12i+1
Right Child 2i+22i+2
Parent (i1)/2(i-1)/2

Linked List

ldatarparent \fbox{l} \fbox{data} \fbox{r} \fbox{parent} \notag

Insertion

  1. Find insertion point
  2. Store there
  3. Verify heap property
  4. if not satisfied, up bubbling

Deletion

  1. Remove the root element (We cannot remove a particular element)
  2. Replace node with the last node of the subtree
  3. Verify Heap property
  4. if not satisfied, down bubbling

Heapification

up/down heap bubbling

  1. compare 2 elements
  2. swap if condition is not satisfied
void maxHeapify(int[] a, int n, int i)
{
  int largest = i, // assuming root is the largest
        l = (2*i) + 1,
        r = (2*i) + 2;

  if(l<n && a[l]>a[largest])
    largest = l;

  if(r<n && a[r]>a[largest])
    largest = r;

  if(largest != i)
    // swap root with largest node
    swap(a[i], a[largest])
}

Applications

  1. Heap Sort
  2. Order Statistics
  3. Priority Queue

Priority Queue

  • Max-Heap for max-priority queue
  • Min-Heap for min-priority queue

Comments