Skip to content

03 Inexact DE

Consider a 1st order inexact DE

\[ M(x, y) dx + N(x, y) dy = 0, \quad (M_y \ne N_x) \]

Steps

  1. Find \(M_y - N_x\)
  2. You will get one of the following cases the simplification will give in terms of a single variable
Case 1 Case 2
\(\dfrac{M_y - N_x}{\color{orange}-M} = h(y)\) \(\dfrac{M_y - N_x}{\color{orange}N} = g(x)\)
IF \(e^{\int h(y) \cdot dy}\) \(e^{\int g(x) \cdot dx}\)
  1. Multiply both sides of equation: Inexact DE \(\times\) IF \(\to\) Exact DE
  2. Then, use Exact DE method

Shortcut

  • Try to get everything in terms of simple integrals like \(dx, dy, d(xy),d(x+y)\).
  • Then use exact DE formulae

This way we can avoid the IF step

Last Updated: 2023-01-25 ; Contributors: AhmedThahir

Comments