Skip to content

03 Inexact DE

Last Updated: 2 years ago2023-01-25 ; Contributors: AhmedThahir

Consider a 1st order inexact DE

M(x,y)dx+N(x,y)dy=0,(My≠Nx) M(x, y) dx + N(x, y) dy = 0, \quad (M_y \ne N_x)

StepsΒΆ

  1. Find Myβˆ’NxM_y - N_x
  2. You will get one of the following cases the simplification will give in terms of a single variable
Case 1 Case 2
Myβˆ’Nxβˆ’M=h(y)\dfrac{M_y - N_x}{\color{orange}-M} = h(y) Myβˆ’NxN=g(x)\dfrac{M_y - N_x}{\color{orange}N} = g(x)
IF e∫h(y)β‹…dye^{\int h(y) \cdot dy} e∫g(x)β‹…dxe^{\int g(x) \cdot dx}
  1. Multiply both sides of equation: Inexact DE Γ—\times IF β†’\to Exact DE
  2. Then, use Exact DE method

ShortcutΒΆ

  • Try to get everything in terms of simple integrals like dx,dy,d(xy),d(x+y)dx, dy, d(xy),d(x+y).
  • Then use exact DE formulae

This way we can avoid the IF step

Comments