Skip to content

05 Joint Distributions

Last Updated: 2 years ago2023-01-25 ; Contributors: AhmedThahir
f(x,y)=P(X=x,Y=y)=P(x∩y)F(x,y)=P(X≀x,Y≀y)f(x,y)β‰₯0f(x∣y)=f(x,y)f(y) \begin{aligned} f(x, y) &= P(X=x, Y=y) \\ &= P(x \cap y) \\ F(x,y) &= P(X \le x, Y \le y) \\ f(x, y) &\ge 0 \\ f(x|y) &= \frac{f(x, y)}{f(y)} \end{aligned}
Discrete Continuous
PDF βˆ‘xβˆ‘yf(x,y)=1\sum\limits_x \sum\limits_y f(x, y) = 1 ∫x∫yf(x,y) dydx=1\int\limits_x \int\limits_y f(x, y) \ \mathrm{d} y \mathrm{d} x = 1
CDF βˆ‘0xβˆ‘0yf(x,y)\sum\limits_0^x \sum\limits_0^y f(x, y) βˆ«βˆ’βˆžxβˆ«βˆ’βˆžyf(x,y) dydx\int\limits_{- \infty}^x \int\limits_{- \infty}^y f(x, y) \ \mathrm{d} y \mathrm{d} x
f(x)f(x) βˆ‘yf(x,y)\sum\limits_y f(x,y) f(x)=∫yf(x,y) dydxf(x) = \int\limits_y f(x,y) \ \mathrm{d} y \mathrm{d} x
f(y)f(y) βˆ‘xf(x,y)\sum\limits_x f(x,y) ∫xf(x,y) dydx\int\limits_x f(x,y) \ \mathrm{d} y \mathrm{d} x
E(x,y)E(x, y) βˆ‘xβˆ‘yxyβ‹…f(x,y)\sum\limits_x \sum\limits_y xy \cdot f(x, y) ∫x∫yxyβ‹…f(x,y) dydx\int\limits_x \int\limits_y xy \cdot f(x, y) \ \mathrm{d} y \mathrm{d} x
E(x)E(x) βˆ‘xxβ‹…f(x,y)\sum\limits_x x \cdot f(x,y) ∫xxβ‹…f(x,y) dydx\int\limits_x x \cdot f(x,y) \ \mathrm{d} y \mathrm{d} x
E(y)E(y) βˆ‘yyβ‹…f(x,y)\sum\limits_y y \cdot f(x,y) ∫yyβ‹…f(x,y) dydx\int\limits_y y \cdot f(x,y) \ \mathrm{d} y \mathrm{d} x

CovarianceΒΆ

Cov(x,y)=E(x,y)βˆ’E(x)β‹…E(y)={>0directly-dependent0independent<0inversely-dependent \begin{aligned} \text{Cov} (x,y) &= E(x,y) - E(x) \cdot E(y) \\ &= \begin{cases} >0 & \text{directly-dependent} \\ 0 & \text{independent}\\<0 & \text{inversely-dependent} \end{cases} \end{aligned}

IndependenceΒΆ

f(x,y)=f(x)β‹…f(y)E(x,y)=E(x)β‹…E(y)Cov(x,y)=0 \begin{aligned} f(x,y) &= f(x) \cdot f(y) \\ E(x, y) &= E(x) \cdot E(y) \\ \text{Cov}(x,y) &= 0 \end{aligned}

Comments