Skip to content

08 Constant Coefficient

Last Updated: 2 years ago2023-01-25 ; Contributors: AhmedThahir

2nd Order Homogeneous DE with constant coefficientsΒΆ

yβ€²β€²+pyβ€²+qy=0 y'' + py' + qy = 0

where p,qp, q are constants

Consider y=emxy = e^{mx} as a possible solution, where mm = unknown constant. So our goal is to find mm.

Then

yβ€²=mβ‹…emxyβ€²=m2β‹…emxβ€…β€ŠβŸΉβ€…β€Š(m2β‹…emx)+p(mβ‹…emx)+qemx=0emx(m2+pm+q)=0 y' = m \cdot e^{mx} \\ y' = m^2 \cdot e^{mx} \\ \implies (m^2 \cdot e^{mx}) + p(m \cdot e^{mx}) + qe^{mx} = 0 \\ e^{mx} ( m^2 + pm + q ) = 0 \\

Auxiliary equationΒΆ

emxβ‰ 0β€…β€ŠβŸΉβ€…β€Š(m2+pm+q)=0 e^{mx} \ne 0 \\ \implies ( m^2 + pm + q ) = 0

Solve this to get the value(s) of unknown mm

Roots General Solution yy
real and distinct m1,m2m_1, m_2 c1em1x+c2em2xc_1 e^{m_1 x} + c_2 e^{m_2 x}
equal roots m1=m2=mm_1 = m_2 = m emx(c1+c2x)e^{mx} (c_1 + c_2 x )
Complex roots m1,m2=a±ibm_1, m_2 = a \pm ib eax(c1cos⁑bx+c2sin⁑bx)e^{ax} (c_1\cos bx + c_2 \sin bx )

Boundary Value ProblemsΒΆ

Using given β€˜initial conditions’, we need to find the values of c1c_1 and c2c_2

Comments