Skip to content

03 Heat and Work

Addable Quantities

  • mass
  • volume
  • U
  • H
  • \(u\) for closed system

note that specific quanties like \(h, u\) can not be added

Work

Spring

\[ \begin{aligned} F &= kx \\ W &= \frac{1}{2} k x^2 \\ &= \frac12 k ({x_2} ^2 - {x_1}^2) \\ \end{aligned} \]

Electric

\[ \begin{aligned} \dot W &= VI \\ W &= VI \Delta t \end{aligned} \]

Boundary Work

Note that temperature should be in \(K\) (Kelvin)

\[ W_\text{out, b} = \int \limits_{v_1}^{v_2} P \cdot dv \]
Type Condition(s) \(W_b\)
Isochoric \(V = c\) \(0\)
Isobaric \(P = c\) \(P_1(V_2 - V_1)\) \(mP_1(\nu_2 - \nu_1)\)
Isothermal \(\begin{aligned} T &= c \\ PV &= mRT \\ P_1 V_1 &= P_2 V_2 \end{aligned}\) \(P_i V_i \ \ln \vert \frac{V_2}{V_1} \vert \\ P_i V_i \ \ln \vert \frac{P_1}{P_2} \vert\) \(mRT \ \ln \vert \frac{V_2}{V_1} \vert\)
\(mRT \ \ln \vert \frac{P_1}{P_2} \vert\)
Polytropic \(\begin{aligned} P V^n &= c \\ P_1 (V_1)^n &= P_2 (V_2)^n \\ \frac{P_1}{P_2} &= \left( \frac{V_2}{V_1} \right)^n \end{aligned}\) \(\frac{P_2 V_2 - P_1 V_1}{1-n}\) \(\frac{mR(T_2 - T_1)}{1-n}\)

Sign Convention

Quantity Sign
\(Q_\text{in}\) +
\(Q_\text{out}\) -
\(W_\text{in}\) -
\(W_\text{out}\) +
expansion +
compression -
Last Updated: 2024-01-24 ; Contributors: AhmedThahir

Comments